SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Warren M.) ;hsvcat:4"

Sökning: WFRF:(Warren M.) > Lantbruksvetenskap

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Holder, Peter E., et al. (författare)
  • Preparing for a changing future in recreational fisheries : 100 research questions for global consideration emerging from a horizon scan
  • 2020
  • Ingår i: Reviews in Fish Biology and Fisheries. - : Springer Science and Business Media LLC. - 0960-3166 .- 1573-5184. ; 30:1, s. 137-151
  • Forskningsöversikt (refereegranskat)abstract
    • Recreational fisheries hold immense ecological, social, and economic value. The management of these fisheries is increasingly important as we move forward in the Anthropocene. Recreational fisheries managers face several challenges as fisheries often involve diverse social and ecological systems comprised of complex feedback and stakeholder motivations and needs. Here, we used a horizon scanning exercise to yield 100 research questions related to recreational fisheries science and management in the Anthropocene. Initial research questions (n = 205) were collected from recreational fisheries experts (i.e., stakeholders, managers, researchers) from various sectors (i.e., industry, government, NGOs) and geographic locations (14 countries: Australia, Brazil, Canada, Czech Republic, Germany, Italy, New Zealand, Norway, South Africa, Spain, Sweden, Switzerland, United Kingdom, USA). These questions were subsequently categorized, thematized, and refined by our authorship team, eventually yielding what we considered to be the top 100 research questions of relevance to management of recreational fisheries. The key themes include: human dimensions; bioeconomics; resource monitoring and data acquisition; governance; management-regulatory actions; management-stock and habitat enhancement; catch-and-release; impacts of recreational fisheries on populations, communities and ecosystems; threats and sustainability; and angler outreach, education and engagement. It is our intention that this comprehensive and forward-looking list will create a framework to guide future research within this field, and contribute to evidence-based recreational fisheries management and policy.
  •  
4.
  • Gardner, A., et al. (författare)
  • Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 237:4, s. 1229-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (A(net)) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO(2)), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO(2) on iWUE and its components A(net) and stomatal conductance (g(s)). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller g(s), but greater A(net), responses to eCO(2) in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO(2) in all PFTs, and that increases in A(net) had stronger effects than reductions in g(s). The USO model correctly captured stomatal behaviour with eCO(2) across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g(1)) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
  •  
5.
  • Jensen, Anna M., 1978-, et al. (författare)
  • Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology
  • 2019
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 39:4, s. 556-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e., Maianthemum trifolium (L.) Sloboda), understory shrubs (Rhododendron groenlandicum (Oeder) Kron and Judd, Chamaedaphne calyculata (L.) Moench., Kalmia polifolia Wangenh. and Vaccinium angustifolium Alton.) and overstory trees (Picea mariana (Mill.) B.S.P. and Larix laricina (Du Roi) K. Koch). We found significant interspecific seasonal differences in specific leaf area, nitrogen content (by area; Na) and photosynthetic parameters (i.e., maximum rates of Rubisco carboxylation (Vcmax25°C), electron transport (Jmax25°C) and dark respiration (Rd25°C)), but minimal correlation between foliar Na and Vcmax25°C, Jmax25°C or Rd25°C, which illustrates that nitrogen alone is not a good correlate for physiological processes such as Rubisco activity that can change seasonally in this system. ELM-SPRUCE was sensitive to the introduction of observed interspecific seasonality in Vcmax25°C, Jmax25°C and Rd25°C, leading to simulated enhancement of net primary production (NPP) using seasonally dynamic parameters as compared with use of static parameters. This pattern was particularly pronounced under simulations with higher temperature and elevated CO2, suggesting a key hypothesis to address with future empirical or observational studies as climate changes. Inclusion of species-specific seasonal photosynthetic parameters should improve estimates of boreal ecosystem-level NPP, especially if impacts of seasonal physiological ontogeny can be separated from seasonal thermal acclimation.
  •  
6.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3.We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
7.
  • Davies, Stuart J., et al. (författare)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
8.
  • Jensen, Anna M., et al. (författare)
  • Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees
  • 2015
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 116:5, s. 821-832
  • Tidskriftsartikel (refereegranskat)abstract
    • Background, Aims and Methods; The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions. To assess the physiological significance of maintaining multiple foliar cohorts we measured photosynthetic capacity, foliar respiration (Rd), and leaf biochemistry and morphology of mature Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Results were applied to a simple model of canopy photosynthesis to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios.Key Results; Temperature responses of key photosynthetic parameters (i.e., light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax), electron transport rate (Jmax)) were dependent on season and generally less responsive in the developing current-year (Y0) needles compared to one-year-old (Y1) or two-year-old (Y2) foliage. Temperature optimums ranged from 18.7 - 23.7, 31.3 - 38.3 and 28.7 - 36.7°C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64% of modeled annual stand C uptake from Y1&2 cohorts (LAI 0.67 m2 m-2) and just 36% from the Y0 cohorts (LAI 0.52 m2 m-2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g., 31% of annual C uptake for a modeled 9°C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions; Collectively, these results illustrate the physiological and ecological significance of different foliar cohorts, and indicate the need for seasonal- and cohort-specific model parameterization when estimating C uptake capacity of boreal forest ecosystems under ambient or future temperature scenarios.
  •  
9.
  • Jensen, Anna M., 1978-, et al. (författare)
  • Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development
  • 2021
  • Ingår i: Frontiers in Forests and Global Change. - : Frontiers Media S.A.. - 2624-893X. ; 3, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtime bud-break and shoot development induces substantial carbon (C) costs in trees. Drought stress during shoot development can impede C uptake and translocation. This is therefore a channel through which water shortage can lead to restricted shoot expansion and physiological capacity, which in turn may impact annual canopy C uptake. We studied effects of drought and re-hydration on early season shoot development, C uptake and partitioning in five individual 10-year old Picea mariana [black spruce] trees to identify and quantify dynamics of key morphological/physiological processes. Trees were subjected to one of two treatments: (i) well-watered control or (ii) drought and rehydration. We monitored changes in morphological [shoot volume, leaf mass area (LMA)], biochemical [osmolality, non-structural carbohydrates (NSC)] and physiological [rates of respiration (Rd) and light-saturated photosynthesis (Asat)] processes during shoot development. Further, to study functional compartmentalization and use of new assimilates, we 13C-pulse labeled shoots at multiple development stages, and measured isotopic signatures of leaf respiration, NSC pools and structural biomass. Shoot water potential dropped to a minimum of −2.5 MPa in shoots on the droughted trees. Development of the photosynthetic apparatus was delayed, as shoots on well-watered trees broke-even 14 days prior to shoots from trees exposed to water deficit. Rd decreased with shoot maturation as growth respiration declined, and was lower in shoots exposed to drought. We found that shoot development was delayed by drought, and while rehydration resulted in recovery of Asat to similar levels as shoots on the well-watered trees, shoot volume remained lower. Water deficit during shoot expansion resulted in longer, yet more compact (i.e., with greater LMA) shoots with greater needle osmolality. The 12C:13C isotopic patterns indicated that internal C partitioning and use was dependent on foliar developmental and hydration status. Shoots on drought-stressed trees prioritized allocating newly fixed C to respiration over structural components. In conclusion, temporary water deficit delayed new shoot development and resulted in greater LMA in black spruce. Since evergreen species such as black spruce retain active foliage for multiple years, impacts of early season drought on net primary productivity could be carried forward into subsequent years.
  •  
10.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - 1758-6798 .- 1758-678X. ; 5:5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (g(s)) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g(s) in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g(s) that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g(s) obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model(1) and the leaf and wood economics spectrum(2,3). We also demonstrate a global relationship with climate. These findin g(s) provide a robust theoretical framework for understanding and predicting the behaviour of g(s) across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (17)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Norby, Richard J. (4)
Ellsworth, David S. (3)
Oren, Ram (3)
Wårlind, David (3)
Prentice, I. Colin (3)
Linderson, Maj-Lena (2)
visa fler...
Uddling, Johan, 1972 (2)
Wallin, Göran, 1955 (2)
Sun, Wei (2)
Malhi, Yadvinder (2)
Smith, Benjamin (2)
Luo, Yiqi (2)
Wang, Ying Ping (2)
Hickler, Thomas (2)
Rogers, Alistair (2)
Zuleta, Daniel, 1990 (2)
Davies, Stuart J. (2)
Zaragoza-Castells, J ... (2)
Bonal, Damien (2)
Rowland, Lucy (2)
Onoda, Yusuke (2)
Zaehle, Soenke (2)
Wang, Han (2)
De Angelis, Paolo (2)
Duque, Álvaro (2)
Gimeno, Teresa E. (2)
Kolari, Pasi (2)
Freeman, Michael (2)
Ewango, Corneille E. ... (2)
Kenfack, David (2)
Makana, Jean Remy (2)
Aguilar, Salomón (2)
Bourg, Norman A. (2)
Brockelman, Warren Y ... (2)
Chang-Yang, Chia Hao (2)
Chen, Yu Yun (2)
Chuyong, George (2)
Clay, Keith (2)
Ediriweera, Sisira (2)
Gunatilleke, I. A.U. ... (2)
Gunatilleke, C. V.S. (2)
Itoh, Akira (2)
Johnson, Daniel J. (2)
Král, Kamil (2)
Lutz, James A. (2)
McMahon, Sean M. (2)
McShea, William J. (2)
Mohamad, Mohizah (2)
Medlyn, B. E. (2)
De Kauwe, Martin G. (2)
visa färre...
Lärosäte
Linnéuniversitetet (7)
Lunds universitet (6)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (4)
Uppsala universitet (2)
Stockholms universitet (1)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy