SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Waters Michael R.) ;lar1:(su)"

Sökning: WFRF:(Waters Michael R.) > Stockholms universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gasman, Danny, et al. (författare)
  • MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
  •  
2.
  • Head, Martin J., et al. (författare)
  • The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch
  • 2022
  • Ingår i: Episodes. - : International Union of Geological Sciences. - 0705-3797 .- 2586-1298. ; 45:4, s. 359-376
  • Tidskriftsartikel (refereegranskat)abstract
    • The Anthropocene was conceptualized in 2000 to reflect the extensive impact of human activities on our planet, and subsequent detailed analyses have revealed a substantial Earth System response to these impacts beginning in the mid-20th century. Key to this understanding was the discovery of a sharp upturn in a multitude of global socio-economic indicators and Earth System trends at that time; a phenomenon termed the ‘Great Acceleration’. It coincides with massive increases in global human-consumed energy and shows the Earth System now on a trajectory far exceeding the earlier variability of the Holocene Epoch, and in some respects the entire Quaternary Period. The evaluation of geological signals similarly shows the mid-20th century as representing the most appropriate inception for the Anthropocene. A recent mathematical analysis has nonetheless challenged the significance of the original Great Acceleration data. We examine this analytical approach and reiterate the robustness of the original data in supporting the Great Acceleration, while emphasizing that intervals of rapid growth are inevitably time-limited, as recognised at the outset. Moreover, the exceptional magnitude of this growth remains undeniable, reaffirming the centrality of the Great Acceleration in justifying a formal chronostratigraphic Anthropocene at the rank of series/epoch.
  •  
3.
  • Henning, Thomas, et al. (författare)
  • MINDS : The JWST MIRI Mid-INfrared Disk Survey
  • 2024
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 136:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of protoplanetary disks has become increasingly important with the Kepler satellite finding that exoplanets are ubiquitous around stars in our galaxy and the discovery of enormous diversity in planetary system architectures and planet properties. High-resolution near-IR and ALMA images show strong evidence for ongoing planet formation in young disks. The JWST MIRI mid-INfrared Disk Survey (MINDS) aims to (1) investigate the chemical inventory in the terrestrial planet-forming zone across stellar spectral type, (2) follow the gas evolution into the disk dispersal stage, and (3) study the structure of protoplanetary and debris disks in the thermal mid-IR. The MINDS survey will thus build a bridge between the chemical inventory of disks and the properties of exoplanets. The survey comprises 52 targets (Herbig Ae stars, T Tauri stars, very low-mass stars and young debris disks). We primarily obtain MIRI/MRS spectra with high signal-to-noise ratio (∼100–500) covering the complete wavelength range from 4.9 to 27.9 μm. For a handful of selected targets we also obtain NIRSpec IFU high resolution spectroscopy (2.87–5.27 μm). We will search for signposts of planet formation in thermal emission of micron-sized dust—information complementary to near-IR scattered light emission from small dust grains and emission from large dust in the submillimeter wavelength domain. We will also study the spatial structure of disks in three key systems that have shown signposts for planet formation, TW Hya and HD 169142 using the MIRI coronagraph at 15.5 μm and 10.65 μm respectively and PDS 70 using NIRCam imaging in the 1.87 μm narrow and the 4.8 μm medium band filter. We provide here an overview of the MINDS survey and showcase the power of the new JWST mid-IR molecular spectroscopy with the TW Hya disk spectrum where we report the detection of the molecular ion CH3+ and the robust confirmation of HCO+ earlier detected with Spitzer.
  •  
4.
  • Menten, K. M., et al. (författare)
  • Herschel/HIFI deepens the circumstellar NH3 enigma
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L7-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims. The observations reported here were performed in order to better constrain the NH3 abundance in the CSEs of four, quite diverse, oxygen-rich stars using the NH3 ortho J(K) = 1(0)-0(0) ground-state line. Methods. We used the Heterodyne Instrument for the Far Infrared aboard Herschel to observe the NH3 J(K) = 1(0)-0(0) transition near 572.5 GHz, simultaneously with the ortho-H2O J(Ka,Kc) = 1(1,0)-1(0,1) transition, toward VY CMa, OH 26.5+0.6, IRC+10420, and IK Tau. We conducted non-LTE radiative transfer modeling with the goal to derive the NH3 abundance in these objects' CSEs. For the last two stars, Very Large Array imaging of NH3 radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH3-emitting regions. Results. We find remarkably strong NH3 emission in all of our objects with the NH3 line intensities rivaling those of the ground state H2O line. The NH3 abundances relative to H-2 are very high and range from 2 x 10(-7) to 3 x 10(-6) for the objects we have studied. Conclusions. Our observations confirm and even deepen the circumstellar NH3 enigma. While our radiative transfer modeling does not yield satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New ways to tackle this mystery will include further Herschel observations of more NH3 lines and imaging with the Expanded Very Large Array.
  •  
5.
  • Steffen, Will, et al. (författare)
  • Stratigraphic and Earth System approaches to defining the Anthropocene
  • 2016
  • Ingår i: Earth's Future. - 2328-4277. ; 4:8, s. 324-345
  • Forskningsöversikt (refereegranskat)abstract
    • Stratigraphy provides insights into the evolution and dynamics of the Earth System over its long history. With recent developments in Earth System science, changes in Earth System dynamics can now be observed directly and projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilize the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy