SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Watson H) ;pers:(Malesani D.)"

Sökning: WFRF:(Watson H) > Malesani D.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cano, Z., et al. (författare)
  • A trio of gamma-ray burst supernovae : GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t-t(0) = 16.1 d, which covers rest-frame 3000-6250 angstrom. Based on Fell lambda 5169 and Sill lambda 6355, our spectrum indicates an unusually low expansion velocity of similar to 4000-6350 km s(-1), the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A/SN 2013fu, we used our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we took advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Meszros (2001, ApJ, 552, L35), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P = 12 ms and a magnetic field of B = 1.1 x 10(15) G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.
  •  
2.
  • Levan, A. J., et al. (författare)
  • The Environment of the Binary Neutron Star Merger GW170817
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z - 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (less than or similar to 1 Gyr) dry merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with less than or similar to 1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r(e) similar to 3 kpc), providing an r(e)-normalized offset that is closer than similar to 90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy.
  •  
3.
  • Amati, L., et al. (författare)
  • The THESEUS space mission concept : science case, design and expected performances
  • 2018
  • Ingår i: Advances in Space Research. - : ELSEVIER SCI LTD. - 0273-1177 .- 1879-1948. ; 62:1, s. 191-244
  • Tidskriftsartikel (refereegranskat)abstract
    • THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1 sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift similar to 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
  •  
4.
  • D'Elia, V., et al. (författare)
  • VLT/X-shooter spectroscopy of the GRB 090926A afterglow
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 523, s. 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: The aim of this paper is to study the environment and intervening absorbers of the gamma-ray burst GRB 090926A through analyzing optical spectra of its afterglow. Methods: We analyzed medium-resolution spectroscopic observations (R = 10 000, corresponding to 30 km s-1, S/N = 15-30 and wavelength range 3000-25 000) of the optical afterglow of GRB 090926A, taken with X-shooter at the VLT ~22 h after the GRB trigger. Results: The spectrum shows that the ISM in the GRB host galaxy at z = 2.1071 is rich in absorption features, with two components contributing to the line profiles. In addition to the ground state lines, we detect C ii, O i, Si ii, Fe ii, and Ni ii-excited absorption features, which we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The distance of component I is found to be 2.40 ± 0.15 kpc, while component II is located far away from the GRB, possibly at ~5 kpc. These values are compatible with those found for other GRBs. The hydrogen column density associated to GRB 090926A is log NH/cm -2 = 21.60 ± 0.07, and the metallicity of the host galaxy is in the range [X/H] = -2.5 to -1.9 with respect to the solar values, i.e., among the lowest values ever observed for a GRB host galaxy. A comparison with galactic chemical evolution models has suggested that the host of GRB090926A is likely to be a dwarf-irregular galaxy. No emission lines were detected, but a Hα flux in emission of 9 × 10-18 erg s-1 cm-2 (i.e., a star-formation rate of 2 M_ȯ yr-1), which is typical of many GRB hosts, would have been detected in our spectra, and thus emission lines are well within the reach of X-shooter. We put an upper limit to the H molecular fraction of the host galaxy ISM, which is f < 7 × 10-7. The continuum has been fitted assuming a power-law spectrum, with a spectral index of β = 0.89-0.02+0.02. The best fit does essentially not require any intrinsic extinction because EB-V < 0.01 mag adopting a SMC extinction curve. Finally, the line of sight of GRB 090926A presents four weak intervening absorption systems in the redshift range 1.24 < z < 1.95. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile, during the science verification phase, proposal code: 060-9427(A).
  •  
5.
  • Fynbo, J. P. U., et al. (författare)
  • Low-resolution Spectroscopy of Gamma-ray Burst Optical Afterglows : Biases in the Swift Sample and Characterization of the Absorbers
  • 2009
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 185:2, s. 526-573
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX < 0.5, is 14% in group (1), 38% in group (2), and >39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lyα absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 275.D-5022 (PI: Chincarini), 075.D-0270 (PI: Fynbo), 077.D-0661 (PI: Vreeswijk), 077.D-0805 (PI: Tagliaferri), 177.A-0591 (PI: Hjorth), 078.D-0416 (PI: Vreeswijk), 079.D-0429 (PI: Vreeswijk), 080.D-0526 (PI: Vreeswijk), 081.A-0135 (PI: Greiner), 281.D-5002 (PI: Della Valle), and 081.A-0856 (PI: Vreeswijk). Also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data obtained herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck foundation.
  •  
6.
  • Postigo, A. de Ugarte, et al. (författare)
  • Spectroscopy of the short-hard GRB 130603B The host galaxy and environment of a compact object merger
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 563, s. A62-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a kilonova-like signature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims. Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods. Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results. From these spectra we determine the redshift of the burst to be z = 0.3565 +/- 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of A(V) = 0.86 +/- 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), N-HX/A(V) is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary.
  •  
7.
  • Rossi, A., et al. (författare)
  • A blast from the infant Universe : The very high-z GRB210905A
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus-Wind, we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27−0.19+0.20 × 1054 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus-Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z > 6 known to date. By assuming a number density n = 1 cm−3 and an efficiency η = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 1052 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift.
  •  
8.
  • Schulze, S., et al. (författare)
  • GRB 120422A/SN 2012bz : Bridging the gap between low- and high-luminosity gamma-ray bursts
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (L-iso less than or similar to 10(48.5) erg s(-1)) than the average of more distant ones (L-iso greater than or similar to 10(49.5) erg s(-1)). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a gamma-ray luminosity of L-iso similar to 10(49.6-49.9) erg s(-1) that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low-and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium-and low-resolution spectrographs with 6-10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of similar to 270 days. Furthermore, we used a tuneable filter that is centred at H alpha to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Gamma(0) similar to 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of less than or similar to 2 x 10(30) erg s(-1) Hz(-1) in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of k(B)T similar to 16 eV and a radius of similar to 7 x 10(13) cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of M-V = -19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M-circle dot, ejecta mass of 5.87 M-circle dot, and kinetic energy of 4.10x10(52) erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy's nucleus. Conclusions. While the prompt gamma-ray emission points to a high-L GRB, the weak afterglow and the low Gamma(0) were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate L-iso of similar to 10(49.6-49.9) erg s(-1). Therefore, we conclude that GRB 120422A was a transition object between low-and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
  •  
9.
  • Selsing, J., et al. (författare)
  • The X-shooter GRB afterglow legacy sample (XS-GRB)
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we present spectra of all gamma-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31/03/2017. In total, we have obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimise biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneously selected sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We have constrained the fraction of dark bursts to be <28 per cent and confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we have provided a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by similar to 33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening Universe.
  •  
10.
  • Sparre, M., et al. (författare)
  • SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B
  • 2011
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 735:1, s. L24-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second-and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E(iso) = 4.2x10(51) erg), a bright afterglow, and obeys the Amati relation, thus being fully consistent with the cosmological population of GRBs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy