SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weaver J) ;hsvcat:2"

Sökning: WFRF:(Weaver J) > Teknik

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
2.
  • Adams, C., et al. (författare)
  • Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:5, s. 927-953
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.
  •  
3.
  •  
4.
  • Plymale, Andrew E., et al. (författare)
  • Niche Partitioning of Microbial Communities at an Ancient Vitrified Hillfort : Implications for Vitrified Radioactive Waste Disposal
  • 2021
  • Ingår i: Geomicrobiology Journal. - : Taylor & Francis. - 0149-0451 .- 1521-0529. ; 38:1, s. 36-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Because microbes cannot be eliminated from radioactive waste disposal facilities, the consequences of bio-colonization must be understood. At a pre-Viking era vitrified hillfort, Broborg, Sweden, anthropogenic glass has been subjected to bio-colonization for over 1,500 years. Broborg is used as a habitat analogue for disposed radioactive waste glass to inform how microbial processes might influence long-term glass durability. Electron microscopy and DNA sequencing of surficial material from the Broborg vitrified wall, adjacent soil, and general topsoil show that the ancient glass supports a niche microbial community of bacteria, fungi, and protists potentially involved in glass alteration. Communities associated with the vitrified wall are distinct and less diverse than soil communities. The vitrified niche of the wall and adjacent soil are dominated by lichens, lichen-associated microbes, and other epilithic, endolithic, and epigeic organisms. These organisms exhibit potential bio-corrosive properties, including silicate dissolution, extraction of essential elements, and secretion of geochemically reactive organic acids, that could be detrimental to glass durability. However, long-term biofilms can also possess a homeostatic function that could limit glass alteration. This study documents potential impacts that microbial colonization and niche partitioning can have on glass alteration, and subsequent release of radionuclides from a disposal facility for vitrified radioactive waste.
  •  
5.
  • Martin, R, et al. (författare)
  • High-Resolution X-ray Photoelectron Spectroscopy of an IrO2(110) Film on Ir(100)
  • 2020
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185 .- 1948-7185. ; 11:17, s. 7184-7189
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) were used to characterize IrO2(110) films on Ir(100) with stoichiometric as well as OH-rich terminations. Core-level Ir 4f and O 1s peaks were identified for the undercoordinated Ir and O atoms and bridging and on-top OH groups at the IrO2(110) surfaces. Peak assignments were validated by comparison of the core-level shifts determined experimentally with those computed using DFT, quantitative analysis of the concentrations of surface species, and the measured variation of the Ir 4f peak intensities with photoelectron kinetic energy. We show that exposure of the IrO2(110) surface to O2 near room temperature produces a large quantity of on-top OH groups because of reaction of background H2 with the surface. The peak assignments made in this study can serve as a foundation for future experiments designed to utilize XPS to uncover atomic-level details of the surface chemistry of IrO2(110).
  •  
6.
  • Jansen, Marielle J A, et al. (författare)
  • Patient-specific fine-tuning of CNNs for follow-up lesion quantification
  • 2020
  • Ingår i: Journal of Medical Imaging.
  • Tidskriftsartikel (refereegranskat)abstract
    • Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNNbased methods have the potential to extract valuable information from previously acquired imaging to better quantify current imaging of the same patient. A pre-trained CNN can be updated with a patient’s previously acquired imaging: patient-specific fine-tuning. In this work, we studied the improvement in performance of lesion quantification methods on MR images after fine-tuning compared to a base CNN. We applied the method to two different approaches: the detection of liver metastases and the segmentation of brain white matter hyperintensities (WMH). The patient-specific fine-tuned CNN has a better performance than the base CNN. For the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87. In this study we showed that patient-specific fine-tuning has potential to improve the lesion quantification performance of general CNNs by exploiting the patient’s previously acquired imaging
  •  
7.
  • Jansen, Marielle J. A., et al. (författare)
  • Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
  • 2020
  • Ingår i: Journal of Medical Imaging. - : SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. - 2329-4302 .- 2329-4310. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valuable information from previously acquired imaging to better quantify lesions on current imaging of the same patient.Approach: A pretrained CNN can be updated with a patient's previously acquired imaging: patient-specific fine-tuning (FT). In this work, we studied the improvement in performance of lesion quantification methods on magnetic resonance images after FT compared to a pretrained base CNN. We applied the method to two different approaches: the detection of liver metastases and the segmentation of brain white matter hyperintensities (WMH).Results: The patient-specific fine-tuned CNN has a better performance than the base CNN. For the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87.Conclusions: We showed that patient-specific FT has the potential to improve the lesion quantification performance of general CNNs by exploiting a patient's previously acquired imaging.
  •  
8.
  • Martin, Rachel, et al. (författare)
  • Isothermal Reduction of IrO2 (110) Films by Methane Investigated Using In Situ X-ray Photoelectron Spectroscopy
  • 2021
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435 .- 2155-5435. ; 11:9, s. 5004-5016
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous exposure to methane causes IrO2 (110) films on Ir(100) to undergo extensive reduction at temperatures from 500 to 650 K. Measurements using in situ X-ray photoelectron spectroscopy (XPS) confirm that CH4 oxidation on IrO2 (110) converts so-called bridging oxygen atoms (O-br) at the surface to HObr groups while concurrently removing oxygen from the oxide film. Reduction of the IrO2 (110) film by methane is mildly activated as evidenced by an increase in the initial reduction rate as the temperature is increased from 500 to 650 K. The XPS results show that subsurface oxygen efficiently replaces O-br atoms at the IrO2 (110) surface during CH4 oxidation, even after the reduction of multiple layers of the oxide film, and that metallic Ir gradually forms at the surface as well. The isothermal rate of IrO2 (110) reduction by methane decreases continuously as metallic Ir replaces surface IrO2 (110) domains, demonstrating that IrO2 (110) is the active phase for CH4 oxidation under the conditions studied. A key finding is that the replacement of O-br atoms with oxygen from the subsurface is efficient enough to preserve IrO2 (110) domains at the surface and enable CH4 to reduce the similar to 10-layer IrO2 (110) films nearly to completion. In agreement with these observations, density functional theory calculations predict that oxygen atoms in the subsurface layer can replace O-br atoms at rates that are comparable to or higher than the rates at which O-br atoms are abstracted during CH4 oxidation. The efficacy with which oxygen in the bulk reservoir replenishes surface oxygen atoms has implications for understanding and modeling catalytic oxidation processes promoted by IrO2 (110).
  •  
9.
  • Sjöblom, Rolf, et al. (författare)
  • Assessment of the reason for the vitrification of a wall at a hillfort. The example of Broborg in Sweden
  • 2022
  • Ingår i: Journal of Archaeological Science. - : Elsevier. - 2352-409X .- 2352-4103. ; 43
  • Tidskriftsartikel (refereegranskat)abstract
    • It was discovered around 250 years ago that some of the rock material in the walls of some hillforts had been subjected to such high temperature that it had vitrified. This prompted a debate as to the reason for it that is still going on today: did the vitrification come about as a result of hostile action, by accident, or for the purpose of constructing the fort? The present paper is based on the recognition that hillforts are different, and therefore should be evaluated individually. All identifiable factors of interest should be included, and especially those that might disprove any alternative. Thus, incentives, competence and petrographic aspects were evaluated for the hillfort named Broborg (dated to the Migration Period, in Sweden A.D. 400–550), and it is concluded that the vitrification here came about for the purpose of constructing the fort.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy