SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Webster Matthew T.) ;pers:(Ratnakumar Abhirami)"

Sökning: WFRF:(Webster Matthew T.) > Ratnakumar Abhirami

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vaysse, Amaury, et al. (författare)
  • Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping
  • 2011
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:10, s. e1002316-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.
  •  
2.
  • Axelsson, Erik, et al. (författare)
  • Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome
  • 2011
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 22:1, s. 51-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of diverse eukaryotes has revealed that recombination events cluster in discrete genomic locations known as hotspots. In humans, a zinc-finger protein, PRDM9, is believed to initiate recombination in >40% of hotspots by binding to a specific DNA sequence motif. However, the PRDM9 coding sequence is disrupted in the dog genome assembly, raising questions regarding the nature and control of recombination in dogs. By analyzing the sequences of PRDM9 orthologs in a number of dog breeds and several carnivores, we show here that this gene was inactivated early in canid evolution. We next use patterns of linkage disequilibrium using more than 170,000 SNP markers typed in almost 500 dogs to estimate the recombination rates in the dog genome using a coalescent-based approach. Broad-scale recombination rates show good correspondence with an existing linkage-based map. Significant variation in recombination rate is observed on the fine scale, and we are able to detect over 4000 recombination hotspots with high confidence. In contrast to human hotspots, 40% of canine hotspots are characterized by a distinct peak in GC content. A comparative genomic analysis indicates that these peaks are present also as weaker peaks in the panda, suggesting that the hotspots have been continually reinforced by accelerated and strongly GC biased nucleotide substitutions, consistent with the long-term action of biased gene conversion on the dog lineage. These results are consistent with the loss of PRDM9 in canids, resulting in a greater evolutionary stability of recombination hotspots. The genetic determinants of recombination hotspots in the dog genome may thus reflect a fundamental process of relevance to diverse animal species.
  •  
3.
  • Axelsson, Erik, et al. (författare)
  • The genomic signature of dog domestication reveals adaptation to a starch-rich diet
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 495:7441, s. 360-364
  • Tidskriftsartikel (refereegranskat)abstract
    • The domestication of dogs. was an important episode in the development of human civilization. The precise timing and location of this event is debated(1-5) and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencimg of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication(6). Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.
  •  
4.
  • Ratnakumar, Abhirami, et al. (författare)
  • Detecting positive selection within genomes : the problem of biased gene conversion
  • 2010
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 365:1552, s. 2571-2580
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of loci influenced by positive selection is a major goal of evolutionary genetics. A popular approach is to perform scans of alignments on a genome-wide scale in order to find regions evolving at accelerated rates on a particular branch of a phylogenetic tree. However, positive selection is not the only process that can lead to accelerated evolution. Notably, GC-biased gene conversion (gBGC) is a recombination-associated process that results in the biased fixation of G and C nucleotides. This process can potentially generate bursts of nucleotide substitutions within hotspots of meiotic recombination. Here, we analyse the results of a scan for positive selection on genes on branches across the primate phylogeny. We show that genes identified as targets of positive selection have a significant tendency to exhibit the genomic signature of gBGC. Using a maximum-likelihood framework, we estimate that more than 20 per cent of cases of significantly elevated non-synonymous to synonymous substitution rates ratio (d(N)/d(S)), particularly in shorter branches, could be due to gBGC. We demonstrate that in some cases, gBGC can lead to very high d(N)/d(S) (more than 2). Our results indicate that gBGC significantly affects the evolution of coding sequences in primates, often leading to patterns of evolution that can be mistaken for positive selection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy