SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weihed Pär) ;pers:(Tavakoli Saman)"

Sökning: WFRF:(Weihed Pär) > Tavakoli Saman

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Bauer, Tobias, et al. (författare)
  • Geological multi-scale modelling as a tool for modern ore exploration in the Skellefte mining district, Sweden
  • 2011
  • Ingår i: Proceedings IAMG 2011 Salzburg. - : cogeo@oeaw-giscience. ; , s. 759-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Palaeoproterozoic Skellefte Mining District is host to abundant ore deposits. Geological 3Dmodelling was performed using the gOcad software platform. Geological methods such as field mapping, structural analysis and facies analysis combined with geophysical techniques such as reflection seismic investigations, resistivity, magnetic, electromagnetic and gravimetric studies and analysis of potential field data provide a framework for the reconstruction of the crustal geometry and geological history of the district as a tool for modern ore exploration. Results will be furthermore utilized for kinematic 4-dimensional modelling
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Skyttä, Pietari, et al. (författare)
  • Pre-1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden
  • 2012
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 206–207, s. 109-136
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex structural evolution within the VMS-hosting Skellefte district, Sweden, has been investigated to provide a solid structural framework for the known mineral deposits in the area. The area occurs in a transition zone between dominantly N-S to NNE-WSW striking structures in the north and approximately WNW-ESE oriented structural trends in the south. The presence of high-strain zones with both the above orientations in the Skellefte district allows constraining their mutual relationship, as well as their significance for the build-up of the Svecokarelian orogen at around 1.89 Ga and for the following tectonic overprint between 1.87-1.80 Ga. The methods used in this study include structural analysis complemented by potential field modelling and SIMS U-Pb geochronology on zircon. Based on the results of this study, the earliest deformation (D1) is constrained at 1.89–1.88 (1.87) Ga and tentatively attributed to crustal extension occurring synchronously with volcanism. Deposition of the Skellefte Group metavolcanic rocks is inferred to have occurred in a pull-apart basin developed due to dextral strike-slip shearing along approximately N-S striking regional-scale shear zones. Variations in the development of deformation fabric across the district indicate that the crust was divided into an upper, un-metamorphosed domain and a lower, strongly metamorphosed domain during D1. We further infer that the transition from the upper to lower crust was locally coupled with development of low-angle crustal-scale detachment zones during D1. The heterogenous crust was subsequently overprinted by transpressional deformation which may be explained by two alternative models. According to the first model, one single SSE-NNW transpressional event with distinct strain partitioning between the coaxially deformed upper crust and the non-coaxially deformed lower crust is largely responsible for the present-day structural geometry. A post-folding rhyolite dyke, here dated at 1871 ± 4 Ma, constrains the minimum age of this event (D2). The alternative model includes two separate transpressional events: a SW-NE one at (1.88-) 1.87 Ga, followed by SSE-NNW transpression at 1.86 Ga. Recognition of the early-orogenic detachment zones allow us to suggest that many of the major crustal-scale shear zones in the central Fennoscandian Shield have originated as 1.89-1.87 Ga crustal detachment zones, i.e. earlier than typically considered.
  •  
9.
  • Tavakoli, Saman, et al. (författare)
  • Deep massive sulphide exploration using 2D and 3D geoelectrical and induced polarization data in Skellefte mining district, northern Sweden
  • 2016
  • Ingår i: Geophysical Prospecting. - : Wiley. - 0016-8025 .- 1365-2478. ; 64:6, s. 1602-1619
  • Tidskriftsartikel (refereegranskat)abstract
    • Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high-chargeability low-resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high-resolution image of the top ∼450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep-resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ∼1-km depth.
  •  
10.
  • Tavakoli, Saman, et al. (författare)
  • Potential Field, Geoelectrical and Reflection Seismic Investigations for Massive Sulphide Exploration in the Skellefte Mining District, Northern Sweden
  • 2016
  • Ingår i: Acta Geophysica. - : Springer Science and Business Media LLC. - 1895-6572 .- 1895-7455. ; 64:6, s. 2171-2199
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-scale geophysical studies were conducted in the central Skellefte district (CSD) in order to delineate the geometry of the upper crust (down to maximum similar to 4.5 km depth) for prospecting volcanic massive sulphide (VMS) mineralization. These geophysical investigations include potential field, resistivity/induced polarization (IP), reflection seismic and magnetotelluric (MT) data which were collected between 2009 and 2010. The interpretations were divided in two scales: (i) shallow (similar to 1.5 km) and (ii) deep (similar to 4.5 km). Physical properties of the rocks, including density, magnetic susceptibility, resistivity and chargeability, were also used to improve interpretations. The study result delineates the geometry of the upper crust in the CSD and new models were suggested based on new and joint geophysical interpretation which can benefit VMS prospecting in the area. The result also indicates that a strongly conductive zone detected by resistivity/IP data may have been missed using other geophysical data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy