SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weinberger Daniel R.) "

Sökning: WFRF:(Weinberger Daniel R.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huckins, Laura M., et al. (författare)
  • Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:4, s. 659-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
  •  
2.
  • Davies, Gail, et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
3.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
5.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
6.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  •  
7.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
8.
  • Al-Haddad, Benjamin J S, et al. (författare)
  • The fetal origins of mental illness.
  • 2019
  • Ingår i: American journal of obstetrics and gynecology. - 1097-6868. ; 21:6, s. 549-562
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of infections and inflammation during pregnancy on the developing fetal brain remains incompletely defined, with important clinical and research gaps. Although the classic infectious TORCH pathogens (ie, Toxoplasma gondii, rubella virus, cytomegalovirus [CMV], herpes simplex virus) are known to be directly teratogenic, emerging evidence suggests that these infections represent the most extreme end of a much larger spectrum of injury. We present the accumulating evidence that prenatal exposure to a wide variety of viral and bacterial infections-or simply inflammation-may subtly alter fetal brain development, leading to neuropsychiatric consequences for the child later in life. The link between influenza infections in pregnant women and an increased risk for development of schizophrenia in their children was first described more than 30 years ago. Since then, evidence suggests that a range of infections during pregnancy may also increase risk for autism spectrum disorder and depression in the child. Subsequent studies in animal models demonstrated that both pregnancy infections and inflammation can result in direct injury to neurons and neural progenitor cells or indirect injury through activation of microglia and astrocytes, which can trigger cytokine production and oxidative stress. Infectious exposures can also alter placental serotonin production, which can perturb neurotransmitter signaling in the developing brain. Clinically, detection of these subtle injuries to the fetal brain is difficult. As the neuropsychiatric impact of perinatal infections or inflammation may not be known for decades after birth, our construct for defining teratogenic infections in pregnancy (eg, TORCH) based on congenital anomalies is insufficient to capture the full adverse impact on the child. We discuss the clinical implications of this body of evidence and how we might place greater emphasis on prevention of prenatal infections. For example, increasing uptake of the seasonal influenza vaccine is a key strategy to reduce perinatal infections and the risk for fetal brain injury. An important research gap exists in understanding how antibiotic therapy during pregnancy affects the fetal inflammatory load and how to avoid inflammation-mediated injury to the fetal brain. In summary, we discuss the current evidence and mechanisms linking infections and inflammation with the increased lifelong risk of neuropsychiatric disorders in the child, and how we might improve prenatal care to protect the fetal brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Åtkomst
fritt online (2)
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Weinberger, Daniel R ... (8)
Andreassen, Ole A., (7)
Djurovic, Srdjan, (7)
McIntosh, Andrew M., (7)
Melle, Ingrid, (7)
Mattheisen, Manuel, (6)
visa fler...
Agartz, Ingrid, (6)
Buckner, Randy L., (6)
Cahn, Wiepke, (6)
Cichon, Sven, (6)
Corvin, Aiden, (6)
Donohoe, Gary, (6)
Kahn, Rene S., (6)
Ophoff, Roel A., (6)
Rietschel, Marcella, (6)
Roffman, Joshua L., (6)
Smoller, Jordan W., (6)
Adams, Hieab H. H., (5)
Seshadri, Sudha, (5)
Van der Lee, Sven J. ... (5)
Armstrong, Nicola J. ... (5)
Bis, Joshua C., (5)
Giddaluru, Sudheer, (5)
Liewald, David C. M. ... (5)
Luciano, Michelle, (5)
Mather, Karen A., (5)
Satizabal, Claudia L ... (5)
Ames, David, (5)
Assareh, Amelia A., (5)
Brodaty, Henry, (5)
Dale, Anders M., (5)
Espeseth, Thomas, (5)
Gudnason, Vilmundur, (5)
Hansell, Narelle K., (5)
Le Hellard, Stephani ... (5)
Ikeda, Masashi, (5)
McDonald, Colm, (5)
Montgomery, Grant W. ... (5)
Morris, Derek W., (5)
Mueller-Myhsok, Bert ... (5)
Reppermund, Simone, (5)
Sachdev, Perminder S ... (5)
Schmidt, Reinhold, (5)
Schofield, Peter R., (5)
Steen, Vidar M., (5)
Thalamuthu, Anbupala ... (5)
Van Duijn, Cornelia ... (5)
Deary, Ian J., (5)
Schmidt, Helena, (5)
Martin, Nicholas G., (5)
visa färre...
Lärosäte
Umeå universitet (7)
Karolinska Institutet (7)
Uppsala universitet (3)
Stockholms universitet (2)
Göteborgs universitet (1)
Högskolan i Jönköping (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (4)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy