SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weiner Michael W) ;lar1:(lu)"

Sökning: WFRF:(Weiner Michael W) > Lunds universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deming, Yuetiva, et al. (författare)
  • Sex-specific genetic predictors of Alzheimer’s disease biomarkers
  • 2018
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 136:6, s. 857-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as endophenotypes in Alzheimer’s disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations. Data came from a previous genome-wide association study (GWAS) of CSF Aβ42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex (PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data from the Religious Orders Study and Rush Memory and Aging Project. In Aβ42, we observed sex interactions at one previous and one novel locus: rs316341 within SERPINB1 (p = 0.04) and rs13115400 near LINC00290 (p = 0.002). These loci showed stronger associations among females (β = − 0.03, p = 4.25 × 10−8; β = 0.03, p = 3.97 × 10−8) than males (β = − 0.02, p = 0.009; β = 0.01, p = 0.20). Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated with higher levels of amyloidosis among females (corrected p values < 0.02) but not males (p > 0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to GMNC (p = 0.004), driven by a stronger association among females (β = 0.05, p = 4.57 × 10−10) compared to males (β = 0.02, p = 0.03). There was also a sex-specific association between rs1393060 and tangle density at autopsy (pfemale = 0.047; pmale = 0.96), and higher levels of expression of two genes within this locus were associated with lower tangle density among females (OSTN p = 0.006; CLDN16 p = 0.002) but not males (p ≥ 0.32). Results suggest a female-specific role for SERPINB1 in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may improve understanding of AD’s genetic architecture.
  •  
2.
  • Gonzales, Mitzi M., et al. (författare)
  • Chronic depressive symptomatology and CSF amyloid beta and tau levels in mild cognitive impairment
  • 2018
  • Ingår i: International Journal of Geriatric Psychiatry. - : Wiley. - 0885-6230 .- 1099-1166. ; 33:10, s. 1305-1311
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate the association between chronic subsyndromal symptoms of depression (SSD), cerebrospinal fluid (CSF) biomarkers, and neuropsychological performance in individuals with mild cognitive impairment (MCI). Methods: Participants included 238 older adults diagnosed with MCI from the Alzheimer's Disease Neuroimaging Initiative repository with cognitive and CSF amyloid beta (Aβ1–42), total tau (t-tau), and phosphorylated tau (p-tau) data. The Neuropsychiatric Inventory identified individuals with chronic endorsement (SSD group N = 80) or no endorsement (non-SSD group N = 158) of depressive symptoms across timepoints. CSF biomarker and cognitive performance were evaluated with linear regression models adjusting for age, education, gender, APOE genotype, global cognitive status, and SSD group. Results: As compared to the non-SSD group, the SSD group displayed lower CSF Aβ1–42 levels (β = −24.293, S.E. = 6.345, P < 0.001). No group differences were observed for CSF t-tau (P = 0.497) or p-tau levels (P = 0.392). Lower CSF Aβ1–42 levels were associated with poorer performance on learning (β = 0.041, S.E. = 0.018, P = 0.021) and memory (β = −0.012, S.E. = 0.005, P = 0.031) measures, whereas higher CSF t-tau levels were associated with poorer performance on measures of global cognition (β = 0.022, S.E = 0.008, P = 0.007) and language (β = −0.010, S.E = 0.004, P = 0.019). SSD was independently associated with diminished global cognition, learning and memory, language, and executive function performance over and above the effects of CSF biomarkers (all P < 0.05). Conclusions: MCI participants with SSD displayed diminished CSF Aβ1–42 levels but did not differ from non-SSD controls in CSF tau levels. Additionally, CSF biomarkers and SSD independently accounted for variance in cognitive performance, suggesting that these factors may uniquely confer cognitive risk in MCI.
  •  
3.
  • Insel, Philip S., et al. (författare)
  • Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology
  • 2016
  • Ingår i: Neurology. - 0028-3878. ; 86:20, s. 1887-1896
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ 42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloid positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ 42. Future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline. © 2016 American Academy of Neurology.
  •  
4.
  • Insel, Philip S., et al. (författare)
  • Cognitive and functional changes associated with Aβ pathology and the progression to mild cognitive impairment
  • 2016
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 48, s. 172-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitively-normal people with evidence of β-amyloid (Aβ) pathology and subtle cognitive dysfunction are believed to be at high risk for progression to mild cognitive impairment due to Alzheimer's disease (AD). Clinical trials in later stages of AD typically include a coprimary endpoint to demonstrate efficacy on both cognitive and functional assessments. Recent trials focus on cognitively-normal people, but functional decline has not been explored for trial designs in this group. The goal of this study was therefore to characterize cognitive and functional decline in (1) cognitively-normal people converting to mild cognitive impairment (MCI) and (2) cognitively-normal β-amyloid-positive (Aβ+) people. Specifically, we sought to identify and compare the cognitive and functional assessments and their weighted combinations that maximize the longitudinal decline specific to these 2 groups. We studied 68 people who converted from normal cognition to MCI and 70 nonconverters, as well as 137 Aβ+ and 210 β-amyloid-negative cognitively-normal people. We used bootstrap aggregation and cross-validated mixed-models to estimate the distribution of weights applied to cognitive and functional outcomes to form composites. We also evaluated best subset optimization. Using optimized composites, we estimated statistical power for a variety of clinical trial scenarios. Overall, 55.4% of cognitively-normal to MCI converters were Aβ+. Large gains in power estimates were obtained when requiring participants to have both subtle cognitive dysfunction and Aβ pathology compared with requiring Aβ pathology alone. Additional power resulted when including functional as well as cognitive outcomes as part of the composite. Composites formed by applying equal weights to all measures provided the highest estimates of cross-validated power, although similar to both continuous weight optimization and best subset optimization. Using a composite to detect a 30% slowing of decline, 80% power was obtained for predicted Aβ+ converters with 375 completers/arm for a 30-month trial using a combination of cognitive/ functional measures. In the Aβ+ group, power to approach levels suitable for a phase III clinical trial would require considerably larger sample sizes. Composites incorporating both cognitive and functional measures may substantially increase the power of a trial in a preclinical (Aβ+) AD population with subtle evidence of cognitive dysfunction.
  •  
5.
  • Soliveres, Santiago, et al. (författare)
  • Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7617, s. 456-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
  •  
6.
  • Soliveres, Santiago, et al. (författare)
  • Locally rare species influence grassland ecosystem multifunctionality
  • 2016
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 371:1694
  • Tidskriftsartikel (refereegranskat)abstract
    • Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above-and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
  •  
7.
  • Allan, Eric, et al. (författare)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
8.
  • Insel, Philip S., et al. (författare)
  • Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information
  • 2016
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 4, s. 76-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Clinical trials in Alzheimer's disease are aimed at early stages of disease, including preclinical Alzheimer's disease. The high cost and time required to screen large numbers of participants for Aβ pathology impede the development of novel drugs. This study's objective was to evaluate the extent to which inexpensive and easily obtainable information can reduce the number of screen failures by increasing the proportion of Aβ+ participants identified for screening. Methods We used random forest models to evaluate the positive predictive value of demographics, APOE, and longitudinal cognitive rates in the prediction of amyloid pathology, measured by florbetapir PET or cerebrospinal fluid. Results Predicting Aβ positivity with demographic, APOE, and cognitive information yielded a positive predictive value estimate of 0.65 (95% CI, 0.50–0.96), nearly a 60% increase over the reference Aβ+ prevalence in the cohort of 0.41. Conclusions By incorporating this procedure, clinical trial screening costs of 7500 USD per participant may be reduced by nearly 7 million USD total.
  •  
9.
  • Insel, Philip S., et al. (författare)
  • Time to amyloid positivity and preclinical changes in brain metabolism, atrophy, and cognition : Evidence for emerging amyloid pathology in alzheimer's disease
  • 2017
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 11:MAY
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aβ pathology is associated with longitudinal changes of brain metabolism, atrophy, and cognition, in cognitively healthy elders. However, Aβ information is usually measured cross-sectionally and dichotomized to classify subjects as Aβ-positive or Aβ-negative, making it difficult to evaluate when brain and cognitive changes occur with respect to emerging Aβ pathology. In this study, we use longitudinal Aβ information to combine the level and rate of change of Aβ to estimate the time to Aβ-positivity for each subject and test this temporal proximity to significant Aβ pathology for associations with brain structure, metabolism, and cognition. Methods: In 89 cognitively healthy elders with up to 10 years of follow-up, we estimated the points at which rates of fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to the time to Aβ-positivity. Points of initial acceleration in rates of decline were estimated using mixed-effects models with penalized regression splines. Results: Acceleration of rates of FDG PET were observed to occur 20+ years before the conventional threshold for Aβ-positivity. Subtle signs of cognitive dysfunction were observed 10+ years before Aβ-positivity. Conclusions: Aβ may have subtle associations with other hallmarks of Alzheimer's disease before Aβ biomarkers reach conventional thresholds for Aβ-positivity. Therefore, we propose that emerging Aβ pathology occurs many years before cognitively healthy elders reach the current threshold for Aβ positivity (preclinical AD). To allow prevention in the earliest disease stages, AD clinical trials may be designed to also include subjects with Aβ biomarkers in the sub-threshold range.
  •  
10.
  • Li, Yan, et al. (författare)
  • Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques
  • 2022
  • Ingår i: Neurology. - 0028-3878. ; 98:7, s. 688-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.MethodsPlasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.ResultsIn the combined cohort of 465 participants, plasma Aβ42/Aβ40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ϵ4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aβ42/Aβ40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ϵ4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals.DiscussionPlasma Aβ42/Aβ40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials.Classification of EvidenceThis study provides Class II evidence that plasma Aβ42/Aβ40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy