SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Weisgarber T.) "

Search: WFRF:(Weisgarber T.)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
3.
  • Abdo, A. A., et al. (author)
  • Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 726:1, s. 43-
  • Journal article (peer-reviewed)abstract
    • The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
  •  
4.
  • Acciari, V. A., et al. (author)
  • Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on ITS redshift
  • 2010
  • In: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 708:2, s. L100-L106
  • Journal article (peer-reviewed)abstract
    • We report the first detection of very high energy(83) (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 +/- 0.5(stat) +/- 0.3(syst) and a flux normalization at 200 GeV of (5.1 +/- 0.9(stat) +/- 0.5(syst)) x 10(-11) TeV-1 cm(-2) s(-1), where stat and syst denote the statistical and systematical uncertainties, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (from 2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high-energy observations with the Fermi Large Area Telescope. Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution is well described by a one-zone synchrotron self-Compton model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.
  •  
5.
  • Abeysekara, A. U., et al. (author)
  • VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog
  • 2018
  • In: Astrophysical Journal. - : Institute of Physics Publishing. - 0004-637X .- 1538-4357. ; 866:1
  • Journal article (peer-reviewed)abstract
    • The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
  •  
6.
  • Acciari, V. A., et al. (author)
  • THE DISCOVERY OF gamma-RAY EMISSION FROM THE BLAZAR RGB J0710+591
  • 2010
  • In: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 715:1, s. L49-L55
  • Journal article (peer-reviewed)abstract
    • The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5 sigma) above the background, corresponding to an integral flux of (3.9 +/- 0.8) x 10(-12) cm(-2) s(-1) (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 +/- 0.26(stat) +/- 0.20(sys). These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED.
  •  
7.
  • Abdalla, H., et al. (author)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Journal article (peer-reviewed)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
8.
  • Aliu, E., et al. (author)
  • Discovery of TeV Gamma-Ray Emission toward Supernova Remnant SNR G78.2+2.1
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 770:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of  and its spectrum is well-characterized by a differential power law (dN/dE = N 0 × (E/TeV)–Γ) with a photon index of Γ = 2.37 ± 0.14stat ± 0.20sys and a flux normalization of N 0 = 1.5 ± 0.2stat ± 0.4sys × 10–12 photon TeV–1 cm–2 s–1. This yields an integral flux of 5.2 ± 0.8stat ± 1.4sys × 10–12 photon cm–2 s–1above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.
  •  
9.
  • Collaboration, V E R I T A S, et al. (author)
  • Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar
  • 2011
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6052, s. 69-72
  • Journal article (peer-reviewed)abstract
    • We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga–electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega–electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.
  •  
10.
  • Acciari, V. A., et al. (author)
  • Gamma-Ray Observations of the Be/Pulsar Binary 1A 0535+262 During a Giant X-Ray Outburst
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 733:2
  • Journal article (peer-reviewed)abstract
    • Giant X-ray outbursts, with luminosities of about 1037 erg s–1, are observed roughly every five years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very high energies (VHEs;E >100 GeV) triggered by the X-ray outburst in 2009 December. The observations started shortly after the onset of the outburst and provided comprehensive coverage of the episode, as well as the 111 day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/Large Area Telescope at high-energy photons (E > 0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with theSwift/X-Ray Telescope and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A 0535+262 from those Be X-ray binaries (such as PSR B1259-63 and LS I +61°303) that have been detected at GeV-TeV energies. We discuss the implications of the results on theoretical models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view