SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Welker Jeffrey M.) ;hsvcat:1"

Sökning: WFRF:(Welker Jeffrey M.) > Naturvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
3.
  • Prevéy, Janet S., et al. (författare)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
4.
  • Vuorinen, Katariina E.M., et al. (författare)
  • Growth rings show limited evidence for ungulates' potential to suppress shrubs across the Arctic
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming has pronounced effects on tundra vegetation, and rising mean temperatures increase plant growth potential across the Arctic biome. Herbivores may counteract the warming impacts by reducing plant growth, but the strength of this effect may depend on prevailing regional climatic conditions. To study how ungulates interact with temperature to influence growth of tundra shrubs across the Arctic tundra biome, we assembled dendroecological data from 20 sites, comprising 1153 individual shrubs and 223 63 annual growth rings. Evidence for ungulates suppressing shrub radial growth was only observed at intermediate summer temperatures (6.5 °C-9 °C), and even at these temperatures the effect was not strong. Multiple factors, including forage preferences and landscape use by the ungulates, and favourable climatic conditions enabling effective compensatory growth of shrubs, may weaken the effects of ungulates on shrubs, possibly explaining the weakness of observed ungulate effects. Earlier local studies have shown that ungulates may counteract the impacts of warming on tundra shrub growth, but we demonstrate that ungulates' potential to suppress shrub radial growth is not always evident, and may be limited to certain climatic conditions.
  •  
5.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
6.
  • Pereira Freitas, Gabriel, 1993-, et al. (författare)
  • Contribution of primary biological aerosol particles to low-level Arctic cloud condensation nuclei
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mixed-phase clouds (MPC) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions critically rely on the ice content of MPC which, in turn, partly depends on the availability of ice nucleating particles (INP). INP sources and concentrations are poorly understood in the Arctic. Recently, INP active at high temperatures were linked to be primary biological aerosol particles (PBAP). Here, we investigated for a full year the PBAP abundance and variability within cloud residuals, directly sampled by a multiparameter bioaerosol spectrometer coupled to a ground-based counterflow virtual impactor inlet at the Zeppelin Observatory (475 m asl), Ny-Ålesund, Svalbard. PBAP concentrations (10−3–10−2L−1) and contributions to coarse-mode aerosol (1 in every 103–104) within cloud residuals were found to be close to those expected for concentrations of high-temperature INP. Transmission electron microscopy also confirmed the presence of PBAP, most likely bacteria, within the cloud residual samples. Seasonally, our results reveal an elevated presence of PBAP within cloud residuals during the summer. Parallel water vapor isotope measurements points towards a link between summer clouds and regionally sourced air masses. Low-level MPC were predominantly observed at the beginning and end of summer, and one explanation for their presence is the existence of high-temperature INP. In this study, we present observational evidence that PBAP might play a role in determining the phase of low-level Arctic clouds, with potential implications for the Arctic climate given ongoing changes in the hydrological and biogeochemical cycles that influence the PBAP flux in and towards the Arctic.
  •  
7.
  • Post, Eric, et al. (författare)
  • Ecological Dynamics Across the Arctic Associated with Recent Climate Change
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 325:5946, s. 1355-1358
  • Forskningsöversikt (refereegranskat)abstract
    • At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (5)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bret-Harte, M. Syndo ... (2)
McGuire, A. David (2)
Natali, Susan M. (2)
Dorrepaal, Ellen (2)
Gough, Laura (2)
Grogan, Paul (2)
visa fler...
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Göteborgs universitet (5)
Stockholms universitet (4)
Umeå universitet (2)
Uppsala universitet (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Gävle (1)
visa fler...
Mälardalens universitet (1)
Jönköping University (1)
Lunds universitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy