SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weniger Christoph) "

Sökning: WFRF:(Weniger Christoph)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Athron, Peter, et al. (författare)
  • A global fit of the MSSM with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the seven-dimensional Minimal Super-symmetric Standard Model (MSSM7) with the new GAMBIT software framework, with all parameters defined at the weak scale. Our analysis significantly extends previous weak-scale, phenomenological MSSM fits, by adding more and newer experimental analyses, improving the accuracy and detail of theoretical predictions, including dominant uncertainties from the Standard Model, the Galactic dark matter halo and the quark content of the nucleon, and employing novel and highly-efficient statistical sampling methods to scan the parameter space. We find regions of the MSSM7 that exhibit co-annihilation of neutralinos with charginos, stops and sbottoms, as well as models that undergo resonant annihilation via both light and heavy Higgs funnels. We find high-likelihood models with light charginos, stops and sbottoms that have the potential to be within the future reach of the LHC. Large parts of our preferred parameter regions will also be accessible to the next generation of direct and indirect dark matter searches, making prospects for discovery in the near future rather good.
  •  
2.
  • Athron, Peter, et al. (författare)
  • GAMBIT : the global and modular beyond-the-standard-model inference tool
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present flrst GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
  •  
3.
  • Athron, Peter, et al. (författare)
  • Global fits of GUT-scale SUSY models with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the Constrained Minimal Supersymmetric Standard Model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of darkmatter in all threemodels, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
  •  
4.
  • Athron, Peter, et al. (författare)
  • SpecBit, DecayBit and PrecisionBit : GAMBIT modules for computing mass spectra, particle decay rates and precision observables
  • 2018
  • Ingår i: European Physical Journal C. - 1434-6044. ; 78:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.
  •  
5.
  • Athron, Peter, et al. (författare)
  • Status of the scalar singlet dark matter model
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:8
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.
  •  
6.
  • Balázs, Csaba, et al. (författare)
  • ColliderBit : a GAMBIT module for the calculation of high-energy collider observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique to ColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics.
  •  
7.
  • Beniwal, Ankit, et al. (författare)
  • Combined analysis of effective Higgs portal dark matter models
  • 2016
  • Ingår i: Physical Review D. - American Physical Society. - 2470-0010. ; 93:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine and extend the analyses of effective scalar, vector, Majorana and Dirac fermion Higgs portal models of dark matter (DM), in which DM couples to the Standard Model (SM) Higgs boson via an operator of the form (ODMHH)-H-dagger. For the fermion models, we take an admixture of scalar.. and pseudoscalar (psi) over bari gamma(5)psi interaction terms. For each model, we apply constraints on the parameter space based on the Planck measured DM relic density and the LHC limits on the Higgs invisible branching ratio. For the first time, we perform a consistent study of the indirect detection prospects for these models based on the WMAP7/Planck observations of the cosmic microwave background, a combined analysis of 15 dwarf spheroidal galaxies by Fermi-LAT and the upcoming Cherenkov Telescope Array (CTA). We also perform a correct treatment of the momentum-dependent direct search cross section that arises from the pseudoscalar interaction term in the fermionic DM theories. We find, in line with previous studies, that current and future direct search experiments such as LUX and XENON1T can exclude much of the parameter space, and we demonstrate that a joint observation in both indirect and direct searches is possible for high mass weakly interacting massive particles. In the case of a pure pseudoscalar interaction of a fermionic DM candidate, future gamma-ray searches are the only class of experiment capable of probing the high mass range of the theory.
  •  
8.
  • Bergström, Lars, et al. (författare)
  • Investigating gamma ray lines from dark matter with future observatories
  • 2012
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - 1475-7516. ; :11, s. 025
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the prospects for studying line features in gamma-ray spectra with upcoming gamma-ray experiments, such as HESS-II, the Cherenkov Telescope Array (CTA), and the GAMMA-400 satellite. As an example we use the narrow feature at 130 GeV seen in public data from the Fermi-LAT satellite. We found that all three experiments should be able to confidently confirm or rule out the presence of this 130 GeV feature. If it is real, it should be confirmed with a confidence level higher than 5 sigma. Assuming it to be a spectral signature of dark matter origin, GAMMA-400, thanks to a projected energy resolution of about 1.5 % at 100 GeV, should also be able to resolve both the gamma gamma line and a corresponding Z gamma or H gamma feature, if the corresponding branching ratio is comparable to that into two photons. It will also allow to distinguish between a gamma-ray line and the similar feature resulting from internal bremsstrahlung photons.
  •  
9.
  • Bergström, Lars, et al. (författare)
  • New Limits on Dark Matter Annihilation from Alpha Magnetic Spectrometer Cosmic Ray Positron Data
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007. ; 111:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The Alpha Magnetic Spectrometer experiment onboard the International Space Station has recently provided cosmic ray electron and positron data with unprecedented precision in the range from 0.5 to 350 GeV. The observed rise in the positron fraction at energies above 10 GeV remains unexplained, with proposed solutions ranging from local pulsars to TeV-scale dark matter. Here, we make use of this high quality data to place stringent limits on dark matter with masses below similar to 300 GeV, annihilating or decaying to leptonic final states, essentially independent of the origin of this rise. We significantly improve on existing constraints, in some cases by up to 2 orders of magnitude.
10.
  • Bernlochner, Florian U., et al. (författare)
  • FlavBit : a GAMBIT module for computing flavour observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - 1434-6044. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as Superlso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy