SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wernstedt Asterholm Ingrid) ;lar1:(his)"

Sökning: WFRF:(Wernstedt Asterholm Ingrid) > Högskolan i Skövde

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • Adiponectin stimulates Sca1+CD34−-adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue
  • 2024
  • Ingår i: Metabolism. - : Elsevier. - 0026-0495 .- 1532-8600. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The adipocyte hormone adiponectin improves insulin sensitivity and there is an inverse correlation between adiponectin levels and type-2 diabetes risk. Previous research shows that adiponectin remodels the adipose tissue into a more efficient metabolic sink. For instance, mice that overexpress adiponectin show increased capacity for hyperplastic adipose tissue expansion as evident from smaller and metabolically more active white adipocytes. In contrast, the brown adipose tissue (BAT) of these mice looks “whiter” possibly indicating reduced metabolic activity. Here, we aimed to further establish the effect of adiponectin on adipose tissue expansion and adipocyte mitochondrial function as well as to unravel mechanistic aspects in this area. Methods: Brown and white adipose tissues from adiponectin overexpressing (APN tg) mice and littermate wildtype controls, housed at room and cold temperature, were studied by histological, gene/protein expression and flow cytometry analyses. Metabolic and mitochondrial functions were studied by radiotracers and Seahorse-based technology. In addition, mitochondrial function was assessed in cultured adiponectin deficient adipocytes from APN knockout and heterozygote mice. Results: APN tg BAT displayed increased proliferation prenatally leading to enlarged BAT. Postnatally, APN tg BAT turned whiter than control BAT, confirming previous reports. Furthermore, elevated adiponectin augmented the sympathetic innervation/activation within adipose tissue. APN tg BAT displayed reduced metabolic activity and reduced mitochondrial oxygen consumption rate (OCR). In contrast, APN tg inguinal white adipose tissue (IWAT) displayed enhanced metabolic activity. These metabolic differences between genotypes were apparent also in cultured adipocytes differentiated from BAT and IWAT stroma vascular fraction, and the OCR was reduced in both brown and white APN heterozygote adipocytes. In both APN tg BAT and IWAT, the mesenchymal stem cell-related genes were upregulated along with an increased abundance of Lineage−Sca1+CD34− “beige-like” adipocyte precursor cells. In vitro, the adiponectin receptor agonist Adiporon increased the expression of the proliferation marker Pcna and decreased the expression of Cd34 in Sca1+ mesenchymal stem cells. Conclusions: We propose that the seemingly opposite effect of adiponectin on BAT and IWAT is mediated by a common mechanism; while reduced adiponectin levels are linked to lower adipocyte OCR, elevated adiponectin levels stimulate expansion of adipocyte precursor cells that produce adipocytes with intrinsically higher metabolic rate than classical white but lower metabolic rate than classical brown adipocytes. Moreover, adiponectin can modify the adipocytes' metabolic activity directly and by enhancing the sympathetic innervation within a fat depot. 
  •  
2.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • NRF2 is essential for adaptative browning of white adipocytes.
  • 2023
  • Ingår i: Redox biology. - : Elsevier. - 2213-2317. ; 68
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for β3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
  •  
3.
  • Benrick, Anna, 1979, et al. (författare)
  • Adiponectin protects against development of metabolic disturbances in a PCOS mouse model
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:34, s. E7187-E7196
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R, suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.
  •  
4.
  • Samad, Manisha, 1995, et al. (författare)
  • Elevated circulating adiponectin levels do not prevent anxiety-like behavior in a PCOS-like mouse model
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycystic ovary syndrome (PCOS) is associated with symptoms of moderate to severe anxiety and depression. Hyperandrogenism is a key feature together with lower levels of the adipocyte hormone adiponectin. Androgen exposure leads to anxiety-like behavior in female offspring while adiponectin is reported to be anxiolytic. Here we test the hypothesis that elevated adiponectin levels protect against the development of androgen-induced anxiety-like behavior. Pregnant mice overexpressing adiponectin (APNtg) and wildtypes were injected with vehicle or dihydrotestosterone to induce prenatal androgenization (PNA) in the offspring. Metabolic profiling and behavioral tests were performed in 4-month-old female offspring. PNA offspring spent more time in the closed arms of the elevated plus maze, indicating anxiety-like behavior. Intriguingly, neither maternal nor offspring adiponectin overexpression prevented an anxiety-like behavior in PNA-exposed offspring. However, adiponectin overexpression in dams had metabolic imprinting effects, shown as lower fat mass and glucose levels in their offspring. While serum adiponectin levels were elevated in APNtg mice, cerebrospinal fluid levels were similar between genotypes. Adiponectin overexpression improved metabolic functions but did not elicit anxiolytic effects in PNA-exposed offspring. These observations might be attributed to increased circulating but unchanged cerebrospinal fluid adiponectin levels in APNtg mice. Thus, increased adiponectin levels in the brain are likely needed to stimulate anxiolytic effects. 
  •  
5.
  • Shrestha, Man Mohan, et al. (författare)
  • Adiponectin Deficiency Alters Placenta Function but Does Not Affect Fetal Growth in Mice
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067 .- 1661-6596. ; 23:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin administration to pregnant mice decreases nutrient transport and fetal growth. An adiponectin deficiency, on the other hand, as seen in obese women during pregnancy, alters fetal growth; however, the mechanism is unclear. To determine the role of adiponectin on placenta function and fetal growth, we used adiponectin knockout, adiponectin heterozygote that displays reduced adiponectin levels, and wild-type mice on a control diet or high fat/high sucrose (HF/HS) diet. Triglycerides (TGs) in the serum, liver, and placenta were measured using colorimetric assays. Gene expression was measured using quantitative RT-PCR. Adiponectin levels did not affect fetal weight, but it reduced adiponectin levels, increased fetal serum and placenta TG content. Wildtype dams on a HF/HS diet protected the fetuses from fatty acid overload as judged by increased liver TGs in dams and normal serum and liver TG levels in fetuses, while low adiponectin was associated with increased fetal liver TGs. Low maternal adiponectin increased the expression of genes involved in fatty acid transport; Lpl and Cd36 in the placenta. Adiponectin deficiency does not affect fetal growth but induces placental dysfunction and increases fetal TG load, which is enhanced with obesity. This could lead to imprinting effects on the fetus and the development of metabolic dysfunction in the offspring.
  •  
6.
  • Stener-Victorin, Elisabet, et al. (författare)
  • Proteomic analysis shows decreased Type I fibers and ectopic fat accumulation in skeletal muscle from women with PCOS
  • 2024
  • Ingår i: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Polycystic ovary syndrome’s (PCOS) main feature is hyperandrogenism, which is linked to a higher risk of metabolic disorders in women. Gene expression analyses in adipose tissue and skeletal muscle reveal dysregulated metabolic pathways in women with PCOS, but these differences do not necessarily lead tochanges in protein levels and biological function. Methods: To advance our understanding of the molecular alterations in PCOS, we performed global proteomic and phosphorylation site analysis using tandem mass spectrometry. Adipose tissue and skeletal muscle were collected at baseline from 10 women with and without PCOS, and in women with PCOS after 5 weeks of treatment with electrical stimulation. Results: Perilipin-1, a protein that typically coats the surface of lipid droplets in adipocytes, was increased whereas proteins involved in muscle contraction and type I muscle fiber function were downregulated in PCOS muscle. Proteins in the thick and thin filaments had many altered phosphorylation sites, indicating differences in protein activity and function. The upregulated proteins in muscle post treatment were enriched in pathways involved in extracellular matrix organization and wound healing, which may reflect a protective adaptation to repeated contractions and tissue damage due to needling. A similar, albeit less pronounced, upregulation in extracellular matrix organization pathways was also seen in adipose tissue. Conclusions: Our results suggest that hyperandrogenic women with PCOS have higher levels of extramyocellular lipids and fewer oxidative insulin-sensitive type I muscle fibers. These could be key factors leading insulin resistance in PCOS muscle while electric stimulation-induced tissue remodeling may be protective.
  •  
7.
  • Wu, Yanling, 1985, et al. (författare)
  • Maternal adiponectin prevents visceral adiposity and adipocyte hypertrophy in prenatal androgenized female mice
  • 2021
  • Ingår i: FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperandrogenism is the main characteristic of polycystic ovary syndrome, which affects placental function and fetal growth, and leads to reproductive and metabolic dysfunction in female offspring. Adiponectin acts on the placenta and may exert endocrine effects on the developing fetus. This study aims to investigate if maternal and/or fetal adiponectin can prevent metabolic and reproductive dysfunction in prenatal androgenized (PNA) female offspring. Adiponectin transgenic (APNtg) and wild-type dams received dihydrotestosterone/vehicle injections between gestational days 16.5-18.5 to induce PNA offspring, which were followed for 4 months. Offspring from APNtg dams were smaller than offspring from wild-type dams, independent of genotype. Insulin sensitivity was higher in wild-type mice from APNtg dams compared to wild-types from wild-type dams, and insulin sensitivity correlated with fat mass and adipocyte size. PNA increased visceral fat% and adipocyte size in wild-type offspring from wild-type dams, while wild-type and APNtg offspring from APNtg dams were protected against this effect. APNtg mice had smaller adipocytes than wild-types and this morphology was associated with an increased expression of genes regulating adipogenesis (Ppard, Pparg, Cebpa, and Cebpb) and metabolism (Chrebp and Lpl). Anogenital distance was increased in all PNA-exposed wild-type offspring, but there was no increase in PNA APNtg offspring, suggesting that adiponectin overexpression protects against this effect. In conclusion, elevated adiponectin levels in utero improve insulin sensitivity, reduce body weight and fat mass gain in the adult offspring and protect against PNA-induced visceral adiposity. In conclusion, these data suggest that PNA offspring benefit from prenatal adiponectin supplementation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy