SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wesolowska Andersen Agata) "

Sökning: WFRF:(Wesolowska Andersen Agata)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borst, Louise, et al. (författare)
  • Genome-wide analysis of cytogenetic aberrations in ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia.
  • 2012
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 157:4, s. 476-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromosomal translocation t(12;21) resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality among patients with childhood acute lymphoblastic leukaemia (ALL). We investigated 62 ETV6/RUNX1-positive childhood ALL patients by single nucleotide polymorphism array to explore acquired copy number alterations (CNAs) at diagnosis. The mean number of CNAs was 2·82 (range 0-14). Concordance with available G-band karyotyping and comparative genomic hybridization was 93%. Based on three major protein-protein complexes disrupted by these CNAs, patients could be categorized into four distinct subgroups, defined by different underlying biological mechanisms relevant to the aetiology of childhood ALL. When recurrent CNAs were evaluated by an oncogenetic tree analysis classifying their sequential order, the most common genetic aberrations (deletions of 6q, 9p, 13q and X, and gains of 10 and 21) seemed independent of each other. Finally, we identified the most common regions with recurrent gains and losses, which comprise microRNA clusters with known oncogenic or tumour-suppressive roles. The present study sheds further light on the genetic diversity of ETV6/RUNX1-positive childhood ALL, which may be important for understanding poor responses among this otherwise highly curable subset of ALL and lead to novel targeted treatment strategies.
  •  
2.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X .- 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
3.
  • Mattis, Katia K, et al. (författare)
  • Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression
  • 2023
  • Ingår i: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 66:4, s. 674-694
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk.METHODS: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles.RESULTS: CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function.CONCLUSIONS/INTERPRETATION: Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy