SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westerlund Anna 1978 ) ;pers:(Johnning Anna 1985)"

Sökning: WFRF:(Westerlund Anna 1978 ) > Johnning Anna 1985

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnning, Anna, 1985, et al. (författare)
  • The resistomes of six carbapenem-resistant pathogens - a critical genotype-phenotype analysis
  • 2018
  • Ingår i: Microbial Genomics. - : Microbiology Society. - 2057-5858. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbapenem resistance is a rapidly growing threat to our ability to treat refractory bacterial infections. To understand how carbapenem resistance is mobilized and spread between pathogens, it is important to study the genetic context of the underlying resistance mechanisms. In this study, the resistomes of six clinical carbapenem-resistant isolates of five different species - Acinetobacter baumannii, Escherichia colt, two Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa - were characterized using whole genome sequencing. All Enterobacteriaceae isolates and the A. baumannii isolate had acquired a large number of antimicrobial resistance genes (7-18 different genes per isolate), including the following encoding carbapenemases: bla(KPC-2), bla(OXA-48), bla(OXA-72), bla(NDM-1), bla(NDm-7) and bla(VIM-1). In addition, a novel version of bla(SHv) was discovered. Four new resistance plasmids were identified and their fully assembled sequences were verified using optical DNA mapping. Most of the resistance genes were colocalized on these and other plasmids, suggesting a risk for coselection. In contrast, five out of six carbapenemase genes were present on plasmids with no or few other resistance genes. The expected level of resistance - based on acquired resistance determinants - was concordant with measured levels in most cases. There were, however, several important discrepancies for four of the six isolates concerning multiple classes of antibiotics. In conclusion, our results further elucidate the diversity of carbapenemases, their mechanisms of horizontal transfer and possible patterns of co-selection. The study also emphasizes the difficulty of using whole genome sequencing for antimicrobial susceptibility testing of pathogens with complex genotypes.
  •  
2.
  • Müller, Vilhelm, 1990, et al. (författare)
  • Cultivation-Free Typing of Bacteria Using Optical DNA Mapping
  • 2020
  • Ingår i: Acs Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 6:5, s. 1076-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of pathogenic bacteria can infect humans, and rapid species identification is crucial for the correct treatment. However, the identification process can often be time-consuming and depend on the cultivation of the bacterial pathogen(s). Here, we present a stand-alone, enzyme-free, optical DNA mapping assay capable of species identification by matching the intensity profiles of large DNA molecules to a database of fully assembled bacterial genomes (>10 000). The assay includes a new data analysis strategy as well as a general DNA extraction protocol for both Gram-negative and Gram-positive bacteria. We demonstrate that the assay is capable of identifying bacteria directly from uncultured clinical urine samples, as well as in mixtures, with the potential to be discriminative even at the subspecies level. We foresee that the assay has applications both within research laboratories and in clinical settings, where the time-consuming step of cultivation can be minimized or even completely avoided.
  •  
3.
  • Nyblom, My, 1995, et al. (författare)
  • Bacterial identification by optical mapping of genomic DNA in nanofluidic channels
  • 2019
  • Ingår i: 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019. - 9781733419000 ; , s. 821-822
  • Konferensbidrag (refereegranskat)abstract
    • A variety of pathogenic bacteria can infect humans and the increase in bacteria resistant to common antibiotics is a large threat to human health worldwide. This work presents a method, based on optical DNA mapping (ODM) in nanofluidic channels, that can detect the type of bacterial present in a sample by matching the obtained maps of large DNA molecules to a database of fully assembled bacterial genomes. The extraction and labelling protocol has been designed to work for both Gram-positive and Gram-negative bacteria, not requiring any prior knowledge about the sample content.
  •  
4.
  • Nyblom, My, 1995, et al. (författare)
  • Strain-level bacterial typing directly from patient samples using optical DNA mapping
  • 2023
  • Ingår i: COMMUNICATIONS MEDICINE. - : Springer Science and Business Media LLC. - 2730-664X. ; 3:31
  • Tidskriftsartikel (refereegranskat)abstract
    • For bacterial infections, it is important to rapidly and accurately identify and characterize the type of bacteria involved so that optimal antibiotic treatment can be given quickly to the patient. However, current diagnostic methods are sometimes slow and cannot be used for mixtures of bacteria. We have, therefore, developed a method to identify bacteria directly from patient samples. The method was tested on two common species of disease-causing bacteria - Escherichia coli and Klebsiella pneumoniae - and it could correctly identify the bacterial strain or subtype in both urine samples and mixtures. Hence, the method has the potential to provide fast diagnostic information for choosing the most suited antibiotic, thereby reducing the risk of death and suffering. Nyblom, Johnning et al. develop an optical DNA mapping approach for bacterial strain typing of patient samples. They demonstrate rapid identification of clinically relevant E. coli and K. pneumoniae strains, without the need for cultivation. BackgroundIdentification of pathogens is crucial to efficiently treat and prevent bacterial infections. However, existing diagnostic techniques are slow or have a too low resolution for well-informed clinical decisions.MethodsIn this study, we have developed an optical DNA mapping-based method for strain-level bacterial typing and simultaneous plasmid characterisation. For the typing, different taxonomical resolutions were examined and cultivated pure Escherichia coli and Klebsiella pneumoniae samples were used for parameter optimization. Finally, the method was applied to mixed bacterial samples and uncultured urine samples from patients with urinary tract infections. Results We demonstrate that optical DNA mapping of single DNA molecules can identify Escherichia coli and Klebsiella pneumoniae at the strain level directly from patient samples. At a taxonomic resolution corresponding to E. coli sequence type 131 and K. pneumoniae clonal complex 258 forming distinct groups, the average true positive prediction rates are 94% and 89%, respectively. The single-molecule aspect of the method enables us to identify multiple E. coli strains in polymicrobial samples. Furthermore, by targeting plasmid-borne antibiotic resistance genes with Cas9 restriction, we simultaneously identify the strain or subtype and characterize the corresponding plasmids. Conclusion The optical DNA mapping method is accurate and directly applicable to polymicrobial and clinical samples without cultivation. Hence, it has the potential to rapidly provide comprehensive diagnostics information, thereby optimizing early antibiotic treatment and opening up for future precision medicine management.
  •  
5.
  • Torstensson, Erik, et al. (författare)
  • Combining dense and sparse labeling in optical DNA mapping
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 16:11 November
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy