SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westerlund Fredrik 1978) ;lar1:(liu)"

Sökning: WFRF:(Westerlund Fredrik 1978) > Linköpings universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bäcklund, Fredrik, et al. (författare)
  • Amyloid fibrils as dispersing agents for oligothiophenes: control of photophysical properties through nanoscale templating and flow induced fibril alignment
  • 2014
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428 .- 2050-7526 .- 2050-7534. ; 2:37, s. 7811-7822
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we report that protein fibrils formed from aggregated proteins, so called amyloid fibrils, serve as an excellent dispersing agent for hydrophobic oligothiophenes such as alpha-sexithiophene (6T). Furthermore, the protein fibrils are capable of orienting 6T along the fibril long axis, as demonstrated by flow-aligned linear dichroism spectroscopy and polarized fluorescence microscopy. The materials are prepared by solid state mixing of 6T with a protein capable of self-assembly. This results in a water soluble composite material that upon heating in aqueous acid undergoes self-assembly into protein fibrils non-covalently functionalized with 6T, with a typical diameter of 5-10 nm and lengths in the micrometre range. The resulting aqueous fibril dispersions are a readily available source of oligothiophenes that can be processed from aqueous solvent, and we demonstrate the fabrication of macroscopic structures consisting of aligned 6T functionalized protein fibrils. Due to the fibril induced ordering of 6T these structures exhibit polarized light emission.
  •  
2.
  • Kang, Evan S. H., et al. (författare)
  • Organic Anisotropic Excitonic Optical Nanoantennas
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 9:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical nanoantennas provide control of light at the nanoscale, which makes them important for diverse areas ranging from photocatalysis and flat metaoptics to sensors and biomolecular tweezing. They have traditionally been limited to metallic and dielectric nanostructures that sustain plasmonic and Mie resonances, respectively. More recently, nanostructures of organic J-aggregate excitonic materials have been proposed capable of also supporting nanooptical resonances, although their advance has been hampered from difficulty in nanostructuring. Here, the authors present the realization of organic J-aggregate excitonic nanostructures, using nanocylinder arrays as model system. Extinction spectra show that they can sustain both plasmon-like resonances and dielectric resonances, owing to the material providing negative and large positive permittivity regions at the different sides of its exciton resonance. Furthermore, it is found that the material is highly anisotropic, leading to hyperbolic and elliptic permittivity regions. Nearfield analysis using optical simulation reveals that the nanostructures therefore support hyperbolic localized surface exciton resonances and elliptic Mie resonances, neither of which has been previously demonstrated for this type of material. The anisotropic nanostructures form a new type of optical nanoantennas, which combined with the presented fabrication process opens up for applications such as fully organic excitonic metasurfaces.
  •  
3.
  • Kesarimangalam, Sriram, 1983, et al. (författare)
  • High diversity of bla NDM-1 -encoding plasmids in Klebsiella pneumoniae isolated from neonates in a Vietnamese hospital
  • 2022
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 1872-7913 .- 0924-8579. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The carbapenemase-encoding gene blaNDM-1 has been reported in Vietnam during the last 10 years, and blaNDM-producing Enterobacteriaceae are now silently and rapidly spreading. A key factor behind dissemination of blaNDM-1 is plasmids, mobile genetic elements that commonly carry antibiotic resistance genes and spread via conjugation. The diversity of blaNDM-1-encoding plasmids from neonates at a large Vietnamese hospital was characterized in this study. Methods: 18 fecal Klebsiella pneumoniae and Klebsiella quasipneumoniae isolates collected from 16 neonates at a large pediatric hospital in Vietnam were studied using optical DNA mapping (ODM) and next-generation sequencing (NGS). Plasmids carrying the blaNDM-1 gene were identified by combining ODM with Cas9 restriction. The plasmids in the isolates were compared to investigate whether the same plasmid was present in different patients. Results: Although the same plasmid was found in some isolates, ODM confirmed that there were at least 10 different plasmids encoding blaNDM-1 among the 18 isolates, thus indicating wide plasmid diversity. The ODM results concur with the NGS data. Interestingly, some isolates had two distinct plasmids encoding blaNDM-1 that could be readily identified with ODM. The coexistence of different plasmids carrying the same blaNDM-1 gene in a single isolate has rarely been reported, probably because of limitations in plasmid characterization techniques. Conclusions: The plasmids encoding the blaNDM-1 gene in this study cohort were diverse and may represent a similar picture in Vietnamese society. The study highlights important aspects of the usefulness of ODM for plasmid analysis.
  •  
4.
  • Lee, Seunghyun, et al. (författare)
  • Plasmonic polymer nanoantenna arrays for electrically tunable and electrode-free metasurfaces
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:40, s. 21569-21576
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically tunable metasurfaces and interrelated nanofabrication techniques are essential for metasurface-based optoelectronic applications. We present a nanofabrication method suitable for various types of plasmonic polymer metasurfaces including inverted arrays of nanoantennas. Inverted metasurfaces are of particular interest since the metasurface itself can work as an electrode due to its interconnected nature, which enables electrical control without adopting an additional electrode. In comparison with inverted nanodisk arrays that support relatively weak resonance features, we show that inverted nanorod arrays can possess stronger resonances, even comparable with those of nanorod arrays. The origin of plasmon resonances in inverted arrays is systematically investigated using finite-difference time-domain (FDTD) simulations. Further, we demonstrate electrically tunable electrode-free metasurface devices using polymer inverted nanorod arrays, which can operate in the full spectral range of the material including the mid-infrared region. Electrically tunable and electrode-free metasurfaces using plasmonic polymer inverted nanoantenna arrays can operate across the entire spectral range of the material, including the mid-infrared region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy