SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westlye Lars T) ;lar1:(hkr)"

Sökning: WFRF:(Westlye Lars T) > Högskolan Kristianstad

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brandt, Christine Lycke, et al. (författare)
  • Cognitive effort and schizophrenia modulate large-scale functional brain connectivity
  • 2015
  • Ingår i: Schizophrenia Bulletin. - : Oxford University Press. - 0586-7614 .- 1745-1701. ; 41:6, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia (SZ) is characterized by cognitive dysfunction and disorganized thought, in addition to hallucinations and delusions, and is regarded a disorder of brain connectivity. Recent efforts have been made to characterize the underlying brain network organization and interactions. However, to which degree connectivity alterations in SZ vary across different levels of cognitive effort is unknown. Utilizing independent component analysis (ICA) and methods for delineating functional connectivity measures from functional magnetic resonance imaging (fMRI) data, we investigated the effects of cognitive effort, SZ and their interactions on between-network functional connectivity during 2 levels of cognitive load in a large and well-characterized sample of SZ patients (n = 99) and healthy individuals (n = 143). Cognitive load influenced a majority of the functional connections, including but not limited to fronto-parietal and default-mode networks, reflecting both decreases and increases in between-network synchronization. Reduced connectivity in SZ was identified in 2 large-scale functional connections across load conditions, with a particular involvement of an insular network. The results document an important role of interactions between insular, default-mode, and visual networks in SZ pathophysiology. The interplay between brain networks was robustly modulated by cognitive effort, but the reduced functional connectivity in SZ, primarily related to an insular network, was independent of cognitive load, indicating a relatively general brain network-level dysfunction.
  •  
2.
  • Haatveit, Beathe, et al. (författare)
  • Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders
  • 2016
  • Ingår i: NeuroImage Clinical. - : Elsevier BV. - 0353-8842 .- 2213-1582. ; 12, s. 389-396
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Schizophrenia is associated with cognitive impairment and brain network dysconnectivity. Recent efforts have explored brain circuits underlying cognitive dysfunction in schizophrenia and documented altered activation of large-scale brain networks, including the task-positive network (TPN) and the task-negative default mode network (DMN) in response to cognitive demands. However, to what extent TPN and DMN dysfunction reflect overlapping mechanisms and are dependent on cognitive state remain to be determined. METHODS: In the current study, we investigated the recruitment of TPN and DMN using independent component analysis in patients with schizophrenia spectrum disorders (n = 29) and healthy controls (n = 21) during two different executive tasks probing planning/problem-solving and spatial working memory. RESULTS: We found reduced load-dependent DMN deactivation across tasks in patients compared to controls. Furthermore, we observed only moderate associations between the TPN and DMN activation across groups, implying that the two networks reflect partly independent mechanisms. Additionally, whereas TPN activation was associated with task performance in both tasks, no such associations were found for DMN. CONCLUSION: These results support a general load-dependent DMN dysfunction in schizophrenia spectrum disorder across two demanding executive tasks that is not merely an epiphenomenon of cognitive dysfunction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy