SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weström Björn) ;pers:(Wierup Nils)"

Sökning: WFRF:(Weström Björn) > Wierup Nils

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fåk, Frida, et al. (författare)
  • Gastric ghrelin cell development is hampered and plasma ghrelin is reduced by delayed weaning in rats
  • 2007
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 1479-6805 .- 0022-0795. ; 192:2, s. 345-352
  • Tidskriftsartikel (refereegranskat)abstract
    • The duration of breastfeeding has attracted much interest, as a prolonged period of breastfeeding has been shown to reduce the risk of developing obesity. The mechanism behind the reduced risk is, however, poorly understood. The novel hormone ghrelin augments appetite, promotes body. weight increase and increases adiposity. The majority of circulating ghrelin emanates from endocrine cells in the oxyntic mucosa of the stomach. In newborn humans and rodents, the number of ghrelin cells is low after birth until weaning, when the cell population is greatly expanded. To date, information about the influence of weaning perturbations on ghrelin cell development is scarce. Therefore, we studied the effect of delayed weaning on gastric ghrelin expression and plasma ghrelin concentration. To this end, special food separator cages were used to prevent the pups from eating solid food, forcing them to drink milk up to 21 days of age. Gastric ghrelin expression was examined by immunocytochemistry and in situ hybridisation, and plasma concentrations were assessed by RIA. Our data showed that gastric ghrelin expression and plasma ghrelin concentration are maintained at a lower level by delayed weaning. We also found that the relation between gastric ghrelin expression and body weight was altered by delayed weaning. Thus, control rats displayed a positive correlation between ghrelin expression and body weight, while no such correlation was evident in animals with delayed weaning. We conclude that delayed weaning exerts a negative influence on ghrelin expression, and that the onset of solid food intake may trigger normal ghrelin expression. Therefore, we suggest that ghrelin may constitute a hormonal link between the duration of breastfeeding and body weight development.
  •  
2.
  • Lozinska, Liudmyla, et al. (författare)
  • Decreased insulin secretion and glucose clearance in exocrine pancreas-insufficient pigs.
  • 2016
  • Ingår i: Experimental Physiology. - 1469-445X. ; 101:1, s. 100-112
  • Tidskriftsartikel (refereegranskat)abstract
    • What is the central question of this study? Does the exocrine pancreas have an impact on endocrine pancreatic function and peripheral nutrient utilization? What is the main finding and its importance? In an exocrine pancreas-insufficient pig model, the insulin response to a glucose load was delayed. Oral enzyme supplementation did not improve the insulin release but facilitated blood glucose clearance. These results suggest an acino-insular axis communication affecting islet function and an impact of gut pancreatic enzymes on blood glucose utilization. The effect of exocrine pancreatic function on the glucose-mediated insulin response and glucose utilization were studied in an exocrine pancreas-insufficient (EPI) pig model. Five 10-week-old EPI pigs after pancreatic duct ligation and 6 age-matched, non-operated control pigs were used in the study. Blood glucose, plasma insulin and C-peptide concentrations were monitored during meal (MGTT), oral (OGTT) and intravenous (IVGTT) glucose tolerance tests. Upon post-mortem examination, the pancreatic remnants of the EPI pigs showed acinar fibrotic atrophy but normal islets and β-cell morphology. The EPI pigs displayed increased fasting glucose concentrations compared with control animals (6.4 ± 0.4 versus 4.8 ± 0.1 mmol l(-1) , P < 0.0001) but unchanged insulin concentrations (2.4 ± 0.6 versus 2.1 ± 0.2 pmol l(-1) ). During the OGTT and IVGTT, the EPI pigs showed slower, impaired glucose utilization, with the disruption of a well-timed insulin response. Plasma C-peptide concentrations confirmed the delayed insulin response during the IVGTT in EPI pigs. Oral pancreatic enzyme supplementation (PES) of EPI pigs improved glucose clearance during IVGTT [AUCglucose 1295 ± 70 mmol l(-1) × (120 min) in EPI versus 1044 ± 32 mmol l(-1) × (120 min) in EPI + PES, P < 0.0001] without reinforcing the release of insulin [AUCC-peptide 14.4 ± 3.8 nmol l(-1) × (120 min) in EPI versus 6.4 ± 1.3 nmol l(-1) × (120 min) in EPI + PES, P < 0.002]. The results suggest the existence of an acino-insular axis regulatory communication. The presence of pancreatic enzymes in the gut facilitates glucose utilization in an insulin-independent manner, indicating the existence of a gut-derived pancreatic enzyme-dependent mechanism involved in peripheral glucose utilization.
  •  
3.
  • Pierzynowski, Stefan G., et al. (författare)
  • Experiments suggesting extra-digestive effects of enteral pancreatic amylase and its peptides on glucose homeostasis in a pig model
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The studies presented were designed to highlight the impact of pancreatic enzymes on glycemic control and insulin response. Blood glucose and plasma insulin levels were monitored after intravenous, oral or direct gut glucose tolerance tests (GTT) in 6 pigs with an intact gastrointestinal tract and in 12 pigs following duodenal-jejunal bypass (DJB) surgery. In the intact pigs, pancreatic enzymes (Creon®) given orally 1 h prior to the GTT, lowered the blood glucose levels during the oral and meal GTT and reduced the plasma insulin response during the intravenous and meal GTT. In DJB pigs, blood glucose and plasma insulin levels were higher following glucose loading into the by-passed biliopancreatic limb as compared to that following glucose loading orally or into the common intestinal limb. Infusion of amylase or amylase peptides together with glucose into the biliopancreatic limb lowered blood glucose levels in DJB pigs. These preliminary data suggest new, extra-digestive, actions of enteral pancreatic enzymes - probably amylase or its peptides - on glucose homeostasis, with an reduction in net glucose absorption into the blood and in insulin response. This ability of digestive enzymes (amylase) to reduce post-prandial hyperglycaemia in an insulin-independent manner could aid in preventing the development of obesity and diabetes.
  •  
4.
  • Wierup, Nils, et al. (författare)
  • Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine
  • 2007
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 92:9, s. 3573-3581
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Ghrelin is a novel hormone produced mainly in the gastric body. Hitherto, mapping studies of ghrelin cells covering the entire gastrointestinal (GI) tract in humans have been lacking. Furthermore, the phenotype of extragastric ghrelin cells is not known. Objective: The objective of the study was to perform a detailed mapping with specimens from all parts of the GI tract, and colocalization studies to phenotype ghrelin cells along the tract. In addition, mapping of ghrelin cells was performed in porcine GI tract, and the plasma profiles of ghrelin and motilin in blood from the porcine intestine were measured. Design: Biopsies from patients were obtained during gastroscopy or surgery. Ghrelin cell density and phenotyping was assessed with immunocytochemistry, in situ hybridization, and immunogold electron microscopy. Plasma ghrelin and motilin levels were measured in pigs, fitted with cannulas in the mesenteric vein. Results: The upper small intestine is unexpectedly rich in ghrelin cells, and these cells contribute to circulating ghrelin. Ghrelin and motilin are coproduced in the same cells in the duodenum and jejunum of both species, and ghrelin and motilin are stored in all secretory granules of such cells in humans, indicating cosecretion. The plasma profiles of ghrelin and motilin in pig were parallel, and a correlation between ghrelin and motilin ( r(2) = 0.22; P < 0.001) was evident in intestinal blood. Conclusions: The upper small intestine is an important source of ghrelin. The likely cosecretion of intestinal ghrelin and motilin suggests concerted actions of the two hormones. These data may have implications for understanding gut motility and clinical implications for dysmotility and bariatric surgery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy