SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wierup Nils) "

Search: WFRF:(Wierup Nils)

  • Result 1-10 of 130
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sharoyko, Vladimir, et al. (author)
  • Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes.
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:21, s. 5733-5749
  • Journal article (peer-reviewed)abstract
    • We have previously identified Transcription Factor B1 Mitochondrial (TFB1M) as a Type 2 Diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D we created a β-cell specific knockout of Tfb1 m, which gradually developed diabetes. Prior to the onset of diabetes, β-Tfb1 m(-/-) mice exhibited retarded glucose clearance due to impaired insulin secretion. β-Tfb1 m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules, and displayed reduced β-cell mass. Moreover, mitochondria in Tfb1 m-deficient β-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine-dimethylation of 12S ribosomal RNA (rRNA). Here, we found that levels of TFB1M and mitochondrial encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in β-Tfb1 m(-/-) islets. Furthermore, levels of reactive oxygen species in response to cellular stress were increased while induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+)-cells in the islets. Taken together, our findings demonstrate that Tfb1 m-deficiency in β-cells caused mitochondrial dysfunction and subsequently diabetes due to combined loss of β-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of β-cell function and mass, the hallmarks of T2D.
  •  
2.
  • Abels, Mia, et al. (author)
  • CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion
  • 2016
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1928-1937
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart(-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
  •  
3.
  • Abels, Mia, et al. (author)
  • Overexpressed beta cell CART increases insulin secretion in mouse models of insulin resistance and diabetes
  • 2022
  • In: Peptides. - : Elsevier BV. - 0196-9781. ; 151
  • Journal article (peer-reviewed)abstract
    • Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.
  •  
4.
  • Ahlqvist, Emma, et al. (author)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Journal article (peer-reviewed)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
5.
  • Ahrén, Bo, et al. (author)
  • DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide.
  • 2007
  • In: Regulatory Peptides. - : Elsevier BV. - 1873-1686 .- 0167-0115. ; 143:1-3, s. 97-103
  • Journal article (peer-reviewed)abstract
    • Inhibition of dipeptidyl peptidase-4 (DPP-4) is currently explored as a novel therapy of type 2 diabetes. The strategy has been shown to improve glycemia in most, but not all, rodent forms of glucose intolerance. In this study, we explored the effects of DPP-4 inhibition in mice with [beta-cell overexpression of human islet amyloid polypeptide (IAPP). We therefore administered the orally active and highly selective DPP-4 inhibitor, vildagliptin (3 pmol/mouse daily) to female mice with [beta-cell overexpression of human IAPP. Controls were given plain water, and a series of untreated wildtype mice was also included. After five weeks, an intravenous glucose tolerance test showed improved glucose disposal and a markedly enhanced insulin response in mice treated with vildagliptin. After eight weeks, a gastric tolerance test showed that vildagliptin improved glucose tolerance and markedly (approximately ten-fold) augmented the insulin response in association with augmented (approximately five-fold) levels of intact glucagon-like peptide-1 (GLP-1). Furthermore, after nine weeks, islets were isolated. Islets from vildagliptin-treated mice showed augmented glucose-stimulated insulin response and a normalization of the islet insulin content, which was reduced by approximately 50% in transgenic controls versus wildtype animals. Double immunostaining of pancreatic islets for insulin and glucagon revealed that transgenic islets displayed severely disturbed intra-islet topography with frequently observed centrally located a-cells. Treatment with vildagliptin restored the islet topography. We therefore conclude that DPP-4 inhibition improves islet function and islet topography in mice with [beta-cell specific transgenic overexpression of human IAPP. (c) 2007 Elsevier B.V. All rights reserved.
  •  
6.
  • Ahrén, Bo, et al. (author)
  • Neuropeptides and the regulation of islet function.
  • 2006
  • In: Diabetes. - 1939-327X. ; 55:Suppl 2, s. 98-107
  • Journal article (peer-reviewed)abstract
    • The pancreatic islets are richly innervated by autonomic nerves. The islet parasympathetic nerves emanate from intrapancreatic ganglia, which are controlled by preganglionic vagal nerves. The islet sympathetic nerves are postganglionic with the nerve cell bodies located in ganglia outside the pancreas. The sensory nerves originate from dorsal root ganglia near the spinal cord. Inside the islets, nerve terminals run close to the endocrine cells. In addition to the classic neurotransmitters acetylcholine and norepinephrine, several neuropeptides exist in the islet nerve terminals. These neuropeptides are vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide, gastrin-releasing polypeptide, and cocaine-and amphetamine-regulated transcript in parasympathetic nerves; neuropeptide Y and galanin in the sympathetic nerves; and calcitonin gene-related polypeptide in sensory nerves. Activation of the parasympathetic nerves and administration of their neurotransmitters stimulate insulin and glucagon secretion, whereas activation of the sympathetic nerves and administration of their neurotransmitters inhibit insulin but stimulate glucagon secretion. The autonomic nerves contribute to the cephalic phase of insulin secretion, to glucagon secretion during hypoglycemia, to pancreatic polypeptide secretion, and to the inhibition of insulin secretion, which is seen during stress. In rodent models of diabetes, the number of islet autonomic nerves is upregulated. This review focuses on neural regulation of islet function, with emphasis on the neuropeptides.
  •  
7.
  • Ahren, Jonatan, et al. (author)
  • Increased beta-cell volume in mice fed a high-fat diet A dynamic study over 12 months
  • 2010
  • In: Islets. - : Informa UK Limited. - 1938-2022 .- 1938-2014. ; 2:6, s. 353-356
  • Journal article (peer-reviewed)abstract
    • As we previously demonstrated, there is an adaptive increase in insulin secretion in insulin resistance in the model of high-fat fed female mice. Since it is assumed that islets also adapt to insulin resistance with beta-cell expansion, we have now examined beta-cell volume in this experimental model. Female C57BL/6JBomTac mice were therefore fed a high-fat diet (60% fat from lard) for three, six or twelve months and beta-cell volume was estimated as beta-cell area per islet, individual beta-cell size and beta-cell number per islet. Control animals were fed a normal chow (11% fat). We found that beta-cell area per islet and total number of beta-cells per islet were increased already after three months of high-fat feeding and that this increase was sustained throughout the twelve month study period. In contrast, individual beta-cell size showed a dynamic pattern with a reduction after three months followed by increase after six and twelve months. The number of apoptosis (caspase-3) positive beta-cells was reduced after three months, whereas there was no difference in proliferation (Ki-67) positive cells, although these were generally rarely observed. Thus, we conclude that insulin resistance accompanying high-fat feeding in mice is followed by progressive beta-cell expansion as evident by early increased islet beta-cell volume and total number of beta-cells, whereas individual beta-cell size showed a dynamic response. The model is also associated with an early reduced apoptosis, which may contribute to the increased beta-cell volume.
  •  
8.
  •  
9.
  • Andersson, Lotta E., et al. (author)
  • Glutamine-elicited secretion of glucagon-like peptide 1 is governed by an activated glutamate dehydrogenase
  • 2018
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 67:3, s. 372-384
  • Journal article (peer-reviewed)abstract
    • Glucagon-like peptide 1 (GLP-1), secreted from intestinal L cells, glucose dependently stimulates insulin secretion from β-cells. This glucose dependence prevents hypoglycemia, rendering GLP-1 analogs a useful and safe treatment modality in type 2 diabetes. Although the amino acid glutamine is a potent elicitor of GLP-1 secretion, the responsible mechanism remains unclear. We investigated how GLP-1 secretion is metabolically coupled in L cells (GLUTag) and in vivo inmice using the insulin-secreting cell line INS-1 832/13 as reference. A membrane-permeable glutamate analog (dimethylglutamate [DMG]), acting downstream of electrogenic transporters, elicited similar alterations in metabolism as glutamine in both cell lines. Both DMG and glutamine alone elicited GLP-1 secretion in GLUTag cells and in vivo, whereas activation of glutamate dehydrogenase (GDH) was required to stimulate insulin secretion from INS-1 832/13 cells. Pharmacological inhibition in vivo of GDH blocked secretion of GLP-1 in response to DMG. In conclusion, our results suggest that nonelectrogenic nutrient uptake and metabolism play an important role in L cell stimulus-secretion coupling. Metabolism of glutamine and related analogs by GDH in the L cell may explain why GLP-1 secretion, but not that of insulin, is activated by these secretagogues in vivo.
  •  
10.
  • Asad, Samina, et al. (author)
  • HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13
  • 2012
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:5
  • Journal article (peer-reviewed)abstract
    • Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 130
Type of publication
journal article (113)
conference paper (10)
research review (4)
doctoral thesis (2)
other publication (1)
Type of content
peer-reviewed (124)
other academic/artistic (6)
Author/Editor
Wierup, Nils (128)
Sundler, Frank (41)
Lindqvist, Andreas (32)
Groop, Leif (27)
Mulder, Hindrik (25)
Fex, Malin (22)
show more...
Bennet, Hedvig (14)
Shcherbina, Liliya (14)
Ahren, Bo (13)
Eliasson, Lena (13)
Dekker-Nitert, Marlo ... (12)
Hansson, Ola (11)
Spégel, Peter (10)
Björkqvist, Maria (10)
Abels, Mia (9)
Riva, Matteo (9)
Ahlqvist, Emma (9)
Hedenbro, Jan (9)
Renström, Erik (8)
Tuomi, Tiinamaija (7)
Fadista, Joao (7)
Sathanoori, Ramasri (7)
Degerman, Eva (7)
Balhuizen, Alexander (7)
Ling, Charlotte (6)
Almgren, Peter (6)
Holm, Cecilia (6)
Lyssenko, Valeriya (5)
Pierzynowski, Stefan (5)
Lernmark, Åke (5)
Taneera, Jalal (5)
Isomaa, Bo (5)
Brundin, Patrik (5)
Ottosson Laakso, Emi ... (5)
Artner, Isabella (5)
Ekblad, Eva (5)
Ekelund, Mikael (5)
Nilsson, Peter (4)
Sörhede-Winzell, Mar ... (4)
Kuusisto, Johanna (4)
Laakso, Markku (4)
Storm, Petter (4)
Manganiello, Vincent ... (4)
Mari, Andrea (4)
Krus, Ulrika (4)
Bacos, Karl (4)
Petersén, Åsa (4)
Weström, Björn (4)
Ström, Kristoffer (4)
Ngara, Mtakai (4)
show less...
University
Lund University (126)
Uppsala University (12)
Karolinska Institutet (9)
University of Gothenburg (6)
Linköping University (5)
Umeå University (2)
show more...
Kristianstad University College (1)
Luleå University of Technology (1)
Malmö University (1)
Mid Sweden University (1)
show less...
Language
English (130)
Research subject (UKÄ/SCB)
Medical and Health Sciences (123)
Natural sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view