SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willerslev E.) ;pers:(Möller Per)"

Sökning: WFRF:(Willerslev E.) > Möller Per

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Willerslev, E, et al. (författare)
  • Fifty thousand years of arctic vegetation change and megafauna diet
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7486, s. 47-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
  •  
2.
  • Arnold, L.J., et al. (författare)
  • Paper II - Dirt, dates and DNA: OSL and radiocarbon chronologies of perennially-frozen sediments in Siberia, and their implications for sedimentary ancient DNA studies
  • 2011
  • Ingår i: Boreas. - : Wiley. - 1502-3885 .- 0300-9483. ; 40:3, s. 417-445
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedThe sedimentary ancient DNA (sedaDNA) technique offers a potentially invaluable means of investigating species evolution and extinction dynamics in high-latitude environments. An implicit assumption of the sedaDNA approach is that the extracted DNA is autochthonous with the host deposit and that it has not been physically transported from older source deposits or reworked within the sedimentary profile by postdepositional mixing. In this paper we investigate whether these fundamental conditions are upheld at seven perennially frozen wetland sites across the Taimyr Peninsula and coastal lowlands of north-central Siberia. Optically stimulated luminescence (OSL) and radiocarbon (C-14) dating are used to constrain the ages of both the inorganic and organic fractions of perennially frozen deposits from which sedaDNA of extinct and extant species have been recovered. OSL and C-14 age/depth profiles, as well as single-grain equivalent dose (De) distribution characteristics, are used to assess the stratigraphic integrity of these sedaDNA sequences by (i) identifying the presence of primary or reworked organic and inorganic material, and (ii) examining the types of depositional and postdepositional processes that have affected specific sedimentary facies. The results of this study demonstrate that even though DNA preservation and stratigraphic integrity are commonly superior in perennially frozen settings, this does not, in itself, guarantee the suitability of the sedaDNA approach. The combined OSL and C-14 chronologies reveal that certain perennially frozen sites may be poorly suited for sedaDNA analysis, and that careful site selection is paramount to ensuring the accuracy of any sedaDNA study - particularly for 'latest appearance date' estimates of extinct taxa.
  •  
3.
  •  
4.
  • Jørgensen, Tine, et al. (författare)
  • A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of Northern Siberia reveals long-term vegetational stability
  • 2012
  • Ingår i: Molecular Ecology. - 0962-1083. ; 21:8, s. 1989-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in Undetermined Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (4612.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 degrees C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.
  •  
5.
  • Wang, Yucheng, et al. (författare)
  • Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Genomics
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7887, s. 86-92
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key fndings include: (1) a relatively homogeneous steppe–tundra fora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher efective precipitation, as well as an increase in the proportion of wetland plants, show negative efects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our fndings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics
  •  
6.
  • Wang, Yucheng, et al. (författare)
  • Reply to: When did mammoths go extinct?
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 612:7938, s. 4-6
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy