SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willerslev Eske) ;pers:(Gilbert M. Thomas P.)"

Sökning: WFRF:(Willerslev Eske) > Gilbert M. Thomas P.

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lorenzen, Eline D., et al. (författare)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
2.
  • Axelsson, Erik, et al. (författare)
  • The effect of ancient DNA damage on inferences of demographic histories.
  • 2008
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 25:10, s. 2181-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal for a change in effective population size in this data set vanishes once the effects of putative damage are removed. Our results suggest that population genetic analyses of aDNA sequences, which do not accurately account for damage, should be interpreted with great caution.
  •  
3.
  • Bærholm Schnell, Ida, et al. (författare)
  • Characterisation of insect and plant origins using DNA extracted from small volumes of bee honey
  • 2010
  • Ingår i: Arthropod-Plant Interactions. - Dordrecht : Springer Science+Business Media B.V.. - 1872-8855 .- 1872-8847. ; 4:2, s. 107-116
  • Tidskriftsartikel (refereegranskat)abstract
    • A DNA-based tool was validated that potentially enables the characterisation of both plant and insect of origin of small (approximately 1 ml) samples of bee honey. Using this method, mitochondrial, nuclear and chloroplast DNA (mtDNA, nuDNA, cpDNA) markers were successfully extracted, PCR amplified, and sequenced from a range of honeys, and the relative amount of plant nuDNA and cpDNA, and bee mtDNA in the samples was quantified using quantitative real-time PCR.Short, but taxonomically informative lengths of insect and plant organelle DNA could be routinely recovered from all honey samples tested, and longer organelle, and nuclear DNA sequences can be recovered from many. The data also enabled preliminary characterisation of the quality of these different DNA sources in honey. Although the absolute quantity of the different genetic markers varied considerably between sample, a general trend was observed of insect mtDNA dominating over plant organelle DNA, and with plant nuclear DNA at the lowest levels. Furthermore there was a clear correlation between the plant DNA content and the success of the PCR assays. To maximise successful characterisation of samples, future studies are recommended to focus on the use of organelle markers, and limit the size of PCR amplicons targeted, although with appropriate sample selection and assay optimisation, other approaches may be possible.
  •  
4.
  • Bergström, Anders, et al. (författare)
  • Grey wolf genomic history reveals a dual ancestry of dogs
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 607:7918, s. 313-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
  •  
5.
  • Campos, Paula F, et al. (författare)
  • Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:12, s. 5675-5680
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at approximately 45,000 radiocarbon years before present ((14)C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 (14)C YBP, recontracted at ca. 18,000 (14)C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.
  •  
6.
  • Campos, Paula F., et al. (författare)
  • Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene
  • 2010
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 19:22, s. 4863-4875
  • Tidskriftsartikel (refereegranskat)abstract
    • Prior to the Holocene, the range of the saiga antelope (Saiga tatarica) spanned from France to the Northwest Territories of Canada. Although its distribution subsequently contracted to the steppes of Central Asia, historical records indicate that it remained extremely abundant until the end of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species' genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two well-supported, and clearly distinct, clades of saiga. The first, spanning a time range from >49 500 C-14 ybp to the present, comprises all the modern specimens and ancient samples from the Northern Urals, Middle Urals and Northeast Yakutia. The second clade is exclusive to the Northern Urals and includes samples dating from between 40 400 to 10 250 C-14 ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate Bayesian Computation analyses show the observed data is more compatible with a drastic population size reduction (c. 66-77%) following either a demographic bottleneck in the course of the Holocene or late Pleistocene, or a geographic fragmentation (followed by local extinction of one subpopulation) at the Holocene/Pleistocene transition.
  •  
7.
  • Cappellini, Enrico, et al. (författare)
  • Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 574:7776, s. 103-
  • Tidskriftsartikel (refereegranskat)abstract
    • The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa(1). However, the irreversible post-mortem degradation(2) of ancient DNA has so far limited its recovery-outside permafrost areasto specimens that are not older than approximately 0.5 million years (Myr)(3). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I-4. and suggested the presence of protein residues in fossils of the Cretaceous period(5)-although with limited phylogenetic use(6). In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch(7-9), using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)(10). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the Glade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates(11), and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
  •  
8.
  • da Fonseca, Rute R., et al. (författare)
  • The origin and evolution of maize in the Southwestern United States
  • 2015
  • Ingår i: Nature Plants. - 2055-026X. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of maize (Zea mays mays) in the US Southwest remains contentious, with conflicting archaeological data supporting either coastal(1-4) or highland(5,6) routes of diffusion of maize into the United States. Furthermore, the genetics of adaptation to the new environmental and cultural context of the Southwest is largely uncharacterized(7). To address these issues, we compared nuclear DNA from 32 archaeological maize samples spanning 6,000 years of evolution to modern landraces. We found that the initial diffusion of maize into the Southwest about 4,000 years ago is likely to have occurred along a highland route, followed by gene flow from a lowland coastal maize beginning at least 2,000 years ago. Our population genetic analysis also enabled us to differentiate selection during domestication for adaptation to the climatic and cultural environment of the Southwest, identifying adaptation loci relevant to drought tolerance and sugar content.
  •  
9.
  • Dalen, Love, et al. (författare)
  • Partial Genetic Turnover in Neandertals : Continuity in the East and Population Replacement in the West
  • 2012
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 29:8, s. 1893-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Remarkably little is known about the population-level processes leading up to the extinction of the neandertal. To examine this, we use mitochondrial DNA sequences from 13 neandertal individuals, including a novel sequence from northern Spain, to examine neandertal demographic history. Our analyses indicate that recent western European neandertals (< 48 kyr) constitute a tightly defined group with low mitochondrial genetic variation in comparison with both eastern and older (> 48 kyr) European neandertals. Using control region sequences, Bayesian demographic simulations provide higher support for a model of population fragmentation followed by separate demographic trajectories in subpopulations over a null model of a single stable population. The most parsimonious explanation for these results is that of a population turnover in western Europe during early Marine Isotope Stage 3, predating the arrival of anatomically modern humans in the region.
  •  
10.
  • Gilbert, M. Thomas P., et al. (författare)
  • Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:24, s. 8327-8332
  • Tidskriftsartikel (refereegranskat)abstract
    • We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis of these and 13 recently published mtDNA genomes demonstrates the existence of two apparently sympatric mtDNA clades that exhibit high interclade divergence. The analytical power afforded by the analysis of the complete mtDNA genomes reveals a surprisingly ancient coalescence age of the two clades, approximate to 1-2 million years, depending on the calibration technique. Furthermore, statistical analysis of the temporal distribution of the C-14 ages of these and previously identified members of the two mammoth clades suggests that clade II went extinct before clade I. Modeling of protein structures failed to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (32)
annan publikation (3)
Typ av innehåll
refereegranskat (32)
populärvet., debatt m.m. (2)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Willerslev, Eske (35)
Götherström, Anders (15)
Orlando, Ludovic (14)
Nielsen, Rasmus (10)
Shapiro, Beth (9)
visa fler...
Campos, Paula F (9)
Dalen, Love (8)
Malmström, Helena (7)
Holmlund, Gunilla (7)
Skoglund, Pontus (7)
Rasmussen, Morten (6)
Storå, Jan (6)
Meldgaard, Morten (6)
Sicheritz-Ponten, Th ... (6)
Hofreiter, Michael (6)
Cappellini, Enrico (5)
Kosintsev, Pavel (5)
Sinding, Mikkel-Holg ... (5)
Zhang, Guojie (5)
Raghavan, Maanasa (5)
Sher, Andrei (5)
Tikhonov, Alexei (5)
Axelsson, Erik (4)
Linderholm, Anna (4)
Jakobsson, Mattias (4)
Petersen, Bent (4)
Gopalakrishnan, Shya ... (4)
Haile, James (4)
Ramos-Madrigal, Jazm ... (4)
Kivisild, Toomas (4)
Wang, Jun (3)
Ho, Simon Y. W. (3)
Larson, Greger (3)
Stenderup, Jesper (3)
Rasmussen, Simon (3)
Hansen, Anders J. (3)
Vretemark, Maria (3)
Lorenzen, Eline D. (3)
Marques-Bonet, Tomas (3)
Metspalu, Mait (3)
Villems, Richard (3)
Germonpré, Mietje (3)
Seguin-Orlando, Anda ... (3)
Fumagalli, Matteo (3)
Ryder, Oliver A. (3)
Brandström Durling, ... (3)
da Fonseca, Rute R. (3)
Kuznetsova, Tatyana (3)
Ginolhac, Aurelien (3)
visa färre...
Lärosäte
Uppsala universitet (29)
Stockholms universitet (10)
Naturhistoriska riksmuseet (7)
Sveriges Lantbruksuniversitet (5)
Linköpings universitet (4)
Lunds universitet (2)
visa fler...
Karolinska Institutet (2)
Göteborgs universitet (1)
visa färre...
Språk
Engelska (34)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Humaniora (5)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy