SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Williams C) ;hsvcat:6"

Sökning: WFRF:(Williams C) > Humaniora

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Williams, John W., et al. (författare)
  • The neotoma paleoecology database, a multiproxy, international, community-curated data resource
  • 2018
  • Ingår i: Quaternary Research. - : Cambridge University Press. - 0033-5894 .- 1096-0287. ; 89:1, s. 156-177
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neotoma Paleoecology Database is a community-curated data resource that supports interdisciplinary global change research by enabling broad-scale studies of taxon and community diversity, distributions, and dynamics during the large environmental changes of the past. By consolidating many kinds of data into a common repository, Neotoma lowers costs of paleodata management, makes paleoecological data openly available, and offers a high-quality, curated resource. Neotoma’s distributed scientific governance model is flexible and scalable, with many open pathways for participation by new members, data contributors, stewards, and research communities. The Neotoma data model supports, or can be extended to support, any kind of paleoecological or paleoenvironmental data from sedimentary archives. Data additions to Neotoma are growing and now include >3.8 million observations, >17,000 datasets, and >9200 sites. Dataset types currently include fossil pollen, vertebrates, diatoms, ostracodes, macroinvertebrates, plant macrofossils, insects, testate amoebae, geochronological data, and the recently added organic biomarkers, stable isotopes, and specimen-level data. Multiple avenues exist to obtain Neotoma data, including the Explorer map-based interface, an application programming interface, the neotoma R package, and digital object identifiers. As the volume and variety of scientific data grow, community-curated data resources such as Neotoma have become foundational infrastructure for big data science.
  •  
2.
  • Melheim, L., et al. (författare)
  • Moving metals III: Possible origins for copper in Bronze Age Denmark based on lead isotopes and geochemistry
  • 2018
  • Ingår i: Journal of Archaeological Science. - : Elsevier BV. - 0305-4403 .- 1095-9238. ; 96, s. 85-105
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Elsevier Ltd This article presents the results of a comprehensive provenance study based on a combined geochemical-isotopic and archaeological approach, comprising 98 analyses of 97 copper-alloy objects from the Danish Bronze Age. When it comes to the question of the origin of the metal, our interpretations diverge somewhat from earlier established theories about the origin of copper imported to Denmark, which mainly pointed to Central and Eastern Europe. Clear geochronological patterns in the Danish dataset are interpreted as being due to shifts in ore sources; reflecting varying areas of origin as well as the utilization of varying ore types. This again relates to shifting trade networks/suppliers and shifting technological trends. Plausible sources for Danish copper-alloys identified in the current study are ore regions in the British Isles, Alpine ore districts in Italy and Austria, as well as ore regions in the western part of the Mediterranean and to some degree the Slovak Carpathians. The comparison includes hundreds of recently published lead isotope data for ores in Slovakia, the Iberian Peninsula and the Italian and Austrian Alps.
  •  
3.
  • Stephens, Lucas, et al. (författare)
  • Archaeological assessment reveals Earth’s early transformation through land use
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 365:6456, s. 897-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans began to leave lasting impacts on Earth’s surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth’s transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy