SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winbo Annika) "

Sökning: WFRF:(Winbo Annika)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cuneo, Bettina F., et al. (författare)
  • Mothers with long QT syndrome are at increased risk for fetal death : findings from a multicenter international study
  • 2020
  • Ingår i: American Journal of Obstetrics and Gynecology. - : MOSBY-ELSEVIER. - 0002-9378 .- 1097-6868. ; 222:3, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Most fetal deaths are unexplained. Long QT syndrome is a genetic disorder of cardiac ion channels. Affected individuals, including fetuses, are predisposed to sudden death. We sought to determine the risk of fetal death in familial long QT syndrome, in which the mother or father carries the long QT syndrome genotype. In addition, we assessed whether risk differed if the long QT syndrome genotype was inherited from the mother or father. OBJECTIVE: This was a retrospective review of pregnancies in families with the 3 most common heterozygous pathogenic long QT syndrome genotypes in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3), which occur in approximately 1 in 2000 individuals. The purpose of our study was to compare pregnancy and birth outcomes in familial long QT syndrome with the normal population and between maternal and paternal carriers of the long QT syndrome genotype. We hypothesized that fetal death before (miscarriage) and after (stillbirths) 20 weeks gestation would be increased in familial long QT syndrome compared with the normal population and that the parent of origin would not affect birth outcomes. STUDY DESIGN: Our study was a multicenter observational case series of 148 pregnancies from 103 families (80 mothers, 23 fathers) with familial long QT syndrome (60 with LQT1, 29 with LQT2, 14 with LQT3) who were recruited from 11 international centers with expertise in hereditary heart rhythm diseases, pediatric and/or adult electrophysiology, and high-risk pregnancies. Clinical data-bases from these sites were reviewed for long QT syndrome that occurred in men or women of childbearing age (18-40 years). Pregnancy outcomes (livebirth, stillbirth, and miscarriage), birthweights, and gestational age at delivery were compared among long QT syndrome genotypes and between maternal vs paternal long QT syndrome-affected status with the use of logistic regression analysis. RESULTS: Most offspring (80%; 118/148) were liveborn at term; 66% of offspring (73/110) had long QT syndrome. Newborn infants of mothers with long QT syndrome were delivered earlier and, when the data were controlled for gestational age, weighed less than newborn infants of long QT syndrome fathers. Fetal arrhythmias were observed rarely, but stillbirths (fetal death at >20 weeks gestation) were 8 times more frequent in long QT syndrome (4% vs approximately 0.5%); miscarriages (fetal death at <= 20 weeks gestation) were 2 times that of the general population (16% vs 8%). The likelihood of fetal death was significantly greater with maternal vs paternal long QT syndrome (24.4% vs 3.4%; P = .036). Only 10% of all fetal deaths underwent postmortem long QT syndrome testing; 2 of 3 cases were positive for the family long QT syndrome genotype. CONCLUSION: This is the first report to demonstrate that mothers with long QT syndrome are at increased risk of fetal death and to uncover a previously unreported cause of stillbirth. Our results suggest that maternal effects of long QT syndrome channelopathy may cause placental or myometrial dysfunction that confers increased susceptibility to fetal death and growth restriction in newborn survivors, regardless of long QT syndrome status.
  •  
2.
  • Diamant, Ulla-Britt, 1955-, et al. (författare)
  • Electrophysiological phenotype in the LQTS mutations Y111C and R518X in the KCNQ1 gene
  • 2013
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 115:10, s. 1423-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Long QT syndrome is the prototypical disorder of ventricular repolarization (VR), and a genotype-phenotype relation is postulated. Furthermore, although increased VR heterogeneity (dispersion) may be important in the arrhythmogenicity in long QT syndrome, this hypothesis has not been evaluated in humans and cannot be tested by conventional electrocardiography. In contrast, vectorcardiography allows assessment of VR heterogeneity and is more sensitive to VR alterations than electrocardiography. Therefore, vectorcardiography was used to compare the electrophysiological phenotypes of two mutations in the LQT1 gene with different in vitro biophysical properties, and with LQT2 mutation carriers and healthy control subjects. We included 99 LQT1 gene mutation carriers (57 Y111C, 42 R518X) and 19 LQT2 gene mutation carriers. Potassium channel function is in vitro most severely impaired in Y111C. The control group consisted of 121 healthy subjects. QRS, QT, and T-peak to T-end (Tp-e) intervals, measures of the QRS vector and T vector and their relationship, and T-loop morphology parameters were compared at rest. Apart from a longer heart rate-corrected QT interval (QT heart rate corrected according to Bazett) in Y111C mutation carriers, there were no significant differences between the two LQT1 mutations. No signs of increased VR heterogeneity were observed among the LQT1 and LQT2 mutation carriers. QT heart rate corrected according to Bazett and Tp-e were longer, and the Tp-e-to-QT ratio greater in LQT2 than in LQT1 and the control group. In conclusion, there was a marked discrepancy between in vitro potassium channel function and in vivo electrophysiological properties in these two LQT1 mutations. Together with previous observations of the relatively low risk for clinical events in Y111C mutation carriers, our results indicate need for cautiousness in predicting in vivo electrophysiological properties and the propensity for clinical events based on in vitro assessment of ion channel function alone.
  •  
3.
  • Diamant, Ulla-Britt, et al. (författare)
  • LQTS founder population in Northern Sweden – the natural history of a potentially fatal inherited cardiac disorder
  • 2021
  • Ingår i: Biodemography and Social Biology. - : Routledge. - 1948-5565 .- 1948-5573. ; 66:3-4, s. 191-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Long QT Syndrome (LQTS) is an autosomal dominant inherited cardiac disorder associated with life-threatening arrhythmias. In northern Sweden, a LQTS founder mutation (p.Y111C, KCNQ1 gene) was verified by genetic haplotype analysis and genealogical studies, and a common ancestor couple was identified. Clinical studies of this population revealed an apparent mild phenotype. However, due to early commencement of prophylactic treatment, the natural history of this disorder cannot be properly assessed based only on clinical data. By using the family tree mortality ratio method (FTMR), we assessed the natural history of the untreated LQTS founder population. The principle of FTMR is to compare the age-specific mortality rates in a historic population harboring an inherited disorder with the corresponding mortality rates in an unaffected control population.Initially, we used the general Swedish population during the same period for comparison and observed an apparent increased longevity in the p.Y111C study population. However, when using a control population born in the same area, we observed no differences regarding overall mortality. Moreover, patterns suggesting age- and sex-stratified excess mortality, in accordance with previous LQTS studies, were evident.This study shows the importance of being aware of historical demographic patterns to avoid misinterpreting when comparing historical data.
  •  
4.
  • Diamant, Ulla-Britt, et al. (författare)
  • Two automatic QT algorithms compared with manual measurement in identification of long QT syndrome
  • 2010
  • Ingår i: Journal of Electrocardiology. - : Elsevier BV. - 0022-0736 .- 1532-8430. ; 43:1, s. 25-30
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Long QT syndrome (LQTS) is an inherited disorder that increases the risk of syncope and malignant ventricular arrhythmias, which may result in sudden death.METHODS: We compared manual measurement by 4 observers (QT(manual)) and 3 computerized measurements for QT interval accuracy in the diagnosis of LQTS: 1. QT measured from the vector magnitude calculated from the 3 averaged orthogonal leads X, Y, and Z (QTVCG) and classified using the same predefined QTc cut-points for classification of QT prolongation as in manual measurements; 2. QT measured by a 12-lead electrocardiogram (ECG) program (QTECG) and subsequently classified using the same cut-points as in (1) above; 3. The same QT value as in (2) above, automatically classified by a 12-lead ECG program with thresholds for QT prolongation adjusted for age and sex (QTinterpret). The population consisted of 94 genetically confirmed carriers of KCNQ1 (LQT1) and KCNH2 (LQT2) mutations and a combined control group of 28 genetically confirmed noncarriers and 66 unrelated healthy volunteers.RESULTS: QT(VCG) provided the best combination of sensitivity (89%) and specificity (90%) in diagnosing LQTS, with 0.948 as the area under the receiver operating characteristic curve. The evaluation of QT measurement by the 4 observers revealed a high interreader variability, and only 1 of 4 observers showed acceptable level of agreement in LQTS mutation carrier identification (kappa coefficient >0.75).CONCLUSION: Automatic QT measurement by the Mida1000/CoroNet system (Ortivus AB, Danderyd, Sweden) is an accurate, efficient, and easily applied method for initial screening for LQTS.
  •  
5.
  • Diamant, Ulla-Britt, et al. (författare)
  • Vectorcardiographic recordings of the Q-T interval in a pediatric long Q-T syndrome population
  • 2013
  • Ingår i: Pediatric Cardiology. - : Springer Science and Business Media LLC. - 0172-0643 .- 1432-1971. ; 34:2, s. 245-249
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the Q-T interval are less reliable in children than in adults. Identification of superior diagnostic tools is warranted. This study aimed to investigate whether a vectorcardiogram (VCG) recorded from three orthogonal leads (X, Y, Z) according to Frank is superior to a 12-lead electrocardiogram (ECG) in providing a correct long Q-T syndrome (LQTS) diagnosis in children. This LQTS group consisted of 35 genetically confirmed carriers of mutations in the KCNQ1 (n = 29) and KCNH2 (n = 6) genes. The control group consisted of 35 age- and gender-matched healthy children. The mean age was 7 years in the LQTS group and 6.7 years in the control group (range, 0.5-16 years). The corrected Q-T interval (QT(c)) was measured manually (QT(man)) by one author (A.W.). The 12-lead ECG automatic measurements (QT(ECG)) and interpretation (QT(Interpret)) of QT(c) were performed with the Mac5000 (GE Medical System), and the VCG automatic measurements (QT(VCG)) were performed with the Mida1000, CoroNet (Ortivus AB, Sweden). By either method, a QT(c) longer than 440 ms was considered prolonged and indicative of LQTS. Of the 35 children with genetically confirmed LQTS, 30 (86 %) received a correct diagnosis using QT(VCG), 29 (82 %) using QT(man), 24 (69 %) using QT(ECG), and 17 (49 %) using QT(Interpret). Specificity was 0.80 for QT(VCG), 0.83 for QT(man), 0.77 for QT(ECG), and 0.83 for QT(Interpret). The VCG automatic measurement of QT(c) seems to be a better predictor of LQTS than automatic measurement and interpretation of 12-lead ECG.
  •  
6.
  • Kaizer, Alexander M., et al. (författare)
  • Effects of cohort, genotype, variant, and maternal β-blocker treatment on foetal heart rate predictors of inherited long QT syndrome
  • 2023
  • Ingår i: Europace. - : Oxford University Press. - 1099-5129 .- 1532-2092. ; 25:11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: In long QT syndrome (LQTS), primary prevention improves outcome; thus, early identification is key. The most common LQTS phenotype is a foetal heart rate (FHR) < 3rd percentile for gestational age (GA) but the effects of cohort, genotype, variant, and maternal β-blocker therapy on FHR are unknown. We assessed the influence of these factors on FHR in pregnancies with familial LQTS and developed a FHR/GA threshold for LQTS.METHODS AND RESULTS: In an international cohort of pregnancies in which one parent had LQTS, LQTS genotype, familial variant, and maternal β-blocker effects on FHR were assessed. We developed a testing algorithm for LQTS using FHR and GA as continuous predictors. Data included 1966 FHRs at 7-42 weeks' GA from 267 pregnancies/164 LQTS families [220 LQTS type 1 (LQT1), 35 LQTS type 2 (LQT2), and 12 LQTS type 3 (LQT3)]. The FHRs were significantly lower in LQT1 and LQT2 but not LQT3 or LQTS negative. The LQT1 variants with non-nonsense and severe function loss (current density or β-adrenergic response) had lower FHR. Maternal β-blockers potentiated bradycardia in LQT1 and LQT2 but did not affect FHR in LQTS negative. A FHR/GA threshold predicted LQT1 and LQT2 with 74.9% accuracy, 71% sensitivity, and 81% specificity.CONCLUSION: Genotype, LQT1 variant, and maternal β-blocker therapy affect FHR. A predictive threshold of FHR/GA significantly improves the accuracy, sensitivity, and specificity for LQT1 and LQT2, above the infant's a priori 50% probability. We speculate this model may be useful in screening for LQTS in perinatal subjects without a known LQTS family history.
  •  
7.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
8.
  • Lundström, Anna, et al. (författare)
  • Cardiac response to water activities in children with Long QT syndrome type 1
  • 2023
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Swimming is a genotype-specific trigger in long QT syndrome type 1 (LQT1).OBJECTIVE: To examine the autonomic response to water activities in children and adolescents with LQT1.METHODS: In this cross-sectional study, LQT1 patients were age and sex matched to one healthy control subject. Electrocardiograms (ECGs) were recorded during face immersion (FI), swimming, diving, and whole-body submersion (WBS). Heart rate (HR) and heart rate variability (HRV) was measured. The high frequency (HF) component of HRV was interpreted to reflect parasympathetic activity, while the low frequency (LF) component was interpreted as reflecting the combined influence of sympathetic and parasympathetic activity on autonomic nervous modulation of the heart.RESULTS: Fifteen LQT1 patients (aged 7-19 years, all on beta-blocker therapy) and fifteen age and sex matched non-medicated controls were included. No significant ventricular arrhythmias were observed in the LQT1 population during the water activities. Out of these 15 matched pairs, 12 pairs managed to complete FI and WBS for more than 10 seconds and were subsequently included in HR and HRV analyses. In response to FI, the LQT1 group experienced a drop in HR of 48 bpm, compared to 67 bpm in the control group (p = 0.006). In response to WBS, HR decreased by 48 bpm in the LQT1 group and 70 bpm in the control group (p = 0.007). A significantly lower PTOT (p < 0.001) and HF (p = 0.011) component was observed before, during and after FI in LQT1 patients compared with the controls. Before, during and after WBS, a significantly lower total power (p < 0.001), LF (p = 0.002) and HF (p = 0.006) component was observed in the LQT1 patients.CONCLUSION: A significantly lower HR decrease in response to water activities was observed in LQT1 subjects on beta-blocker therapy, compared to matched non-medicated controls. The data suggests an impaired parasympathetic response in LQT1 children and adolescents. An aberrant autonomic nervous system (ANS) response may cause an autonomic imbalance in this patient group.
  •  
9.
  • Mann, Stefan A., et al. (författare)
  • Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes
  • 2016
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 0022-2828 .- 1095-8584. ; 100, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In-silico models of human cardiac electrophysiology are now being considered for prediction of cardiotoxicity as part of the preclinical assessment phase of all new drugs. We ask the question whether any of the available models are actually fit for this purpose. We tested three models of the human ventricular action potential, the O'hara-Rudy (ORD11), the Grandi-Bers (GB10) and the Ten Tusscher (TT06) models. We extracted clinical QT data for LQTS1 and LQTS2 patients with nonsense mutations that would be predicted to cause 50% loss of function in I-Ks and I-Kr respectively. We also obtained clinical QT data for LQTS3 patients. We then used a global optimization approach to improve the existing in silico models so that they reproduced all three clinical data sets more closely. We also examined the effects of adrenergic stimulation in the different LQTS subsets. All models, in their original form, produce markedly different and unrealistic predictions of QT prolongation for LQTS1, 2 and 3. After global optimization of the maximum conductances for membrane channels, all models have similar current densities during the action potential, despite differences in kinetic properties of the channels in the different models, and more closely reproduce the prolongation of repolarization seen in all LQTS subtypes. In-silico models of cardiac electrophysiology have the potential to be tremendously useful in complementing traditional preclinical drug testing studies. However, our results demonstrate they should be carefully validated and optimized to clinical data before they can be used for this purpose.
  •  
10.
  • Stattin, Eva-Lena, et al. (författare)
  • Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing
  • 2012
  • Ingår i: BMC Cardiovascular Disorders. - : BioMed Central. - 1471-2261 .- 1471-2261. ; 12, s. 95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort.Methods: Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umea University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT).Results: In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death.Conclusion: In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected cases (8%) harboured a mutation in the RYR2 gene. The mutation panorama is characterised by founder mutations (25%), even so, this cohort increases the amount of known LQTS-associated mutations, as approximately one-third (28%) of the detected mutations were unique.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (23)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Rydberg, Annika (22)
Winbo, Annika (20)
Diamant, Ulla-Britt (12)
Jensen, Steen M. (11)
Stattin, Eva-Lena (10)
Persson, Johan (7)
visa fler...
Ackerman, Michael J. (4)
Schwartz, Peter J (4)
Dagradi, Federica (4)
Norberg, Anna (3)
Herberg, Ulrike (3)
Arbelo, Elena (2)
Mazzanti, Andrea (2)
Tadros, Rafik (2)
Probst, Vincent (2)
Roden, Dan M. (2)
Ellinor, Patrick T. (2)
Lubitz, Steven A. (2)
Brugada, Josep (2)
Tfelt-Hansen, Jacob (2)
Bezzina, Connie R. (2)
Shimizu, Wataru (2)
Borggrefe, Martin (2)
Guicheney, Pascale (2)
Tester, David J. (2)
Priori, Silvia G (2)
Sarquella-Brugada, G ... (2)
Brugada, Ramon (2)
van den Berg, Maarte ... (2)
Gourraud, Jean-Bapti ... (2)
Odening, Katja E. (2)
Schott, Jean-Jacques (2)
Benson, D. Woodrow (2)
Crotti, Lia (2)
Beckmann, Britt M (2)
Spazzolini, Carla (2)
Kaeaeb, Stefan (2)
Cuneo, Bettina F (2)
Bos, J. Martijn (2)
Kaizer, Alexander M. (2)
Clur, Sally Ann (2)
Swan, Heikki (2)
Etheridge, Susan (2)
Killen, Stacy A. S. (2)
Wacker-Gussmann, Ann ... (2)
Horigome, Hitoshi (2)
Napolitano, Carlo (2)
Lahrouchi, Najim (2)
Postema, Pieter G. (2)
Walsh, Roddy (2)
visa färre...
Lärosäte
Umeå universitet (25)
Lunds universitet (3)
Göteborgs universitet (1)
Uppsala universitet (1)
Karolinska Institutet (1)
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy