SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winton L.) "

Sökning: WFRF:(Winton L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdesselam, A., et al. (författare)
  • The ATLAS semiconductor tracker end-cap module
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 575:3, s. 353-389
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker. (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 mu s buffer. The highest anticipated dose after 10 years operation is 1.4x10(14) cm(-2) in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area similar to 70 cm(2), each having 2 x 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X-0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e(-) equivalent noise charge (ENC) rising to only 1800e(-) ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mu m (r phi) resolution perpendicular to the strip directions or 580 mu m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.
  •  
2.
  • Winton, V.H.L., et al. (författare)
  • Multiple sources of soluble atmospheric iron to Antarctic waters
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 30:3, s. 421-437
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ross Sea, Antarctica, is a highly productive region of the Southern Ocean. Significant new sources of iron (Fe) are required to sustain phytoplankton blooms in the austral summer. Atmospheric deposition is one potential source. The fractional solubility of Fe is an important variable determining Fe availability for biological uptake. To constrain aerosol Fe inputs to the Ross Sea region, fractional solubility of Fe was analyzed in a snow pit from Roosevelt Island, eastern Ross Sea. In addition, aluminum, dust, and refractory black carbon (rBC) concentrations were analyzed, to determine the contribution of mineral dust and combustion sources to the supply of aerosol Fe. We estimate exceptionally high dissolved Fe (dFe) flux of 1.2 × 10−6 g m−2 y−1 and total dissolvable Fe flux of 140 × 10−6 g m−2 y−1 for 2011/2012. Deposition of dust, Fe, Al, and rBC occurs primarily during spring-summer. The observed background fractional Fe solubility of ~0.7% is consistent with a mineral dust source. Radiogenic isotopic ratios and particle size distribution of dust indicates that the site is influenced by local and remote sources. In 2011/2012 summer, relatively high dFe concentrations paralleled both mineral dust and rBC deposition. Around half of the annual aerosol Fe deposition occurred in the austral summer phytoplankton growth season; however, the fractional Fe solubility was low. Our results suggest that the seasonality of dFe deposition can vary and should be considered on longer glacial-interglacial timescales.
  •  
3.
  •  
4.
  • Winton, V.H.L., et al. (författare)
  • The origin of lithogenic sediment in the south-western Ross Sea and implications for iron fertilization
  • 2016
  • Ingår i: Antarctic Science. - Cambridge : Cambridge University Press. - 0954-1020 .- 1365-2079. ; 28:4, s. 250-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Summer iron (Fe) fertilization in the Ross Sea has previously been observed in association with diatom productivity, lithogenic particles and excess Fe in the water column. This productivity event occurred during an early breakout of sea ice via katabatic winds, suggesting that aeolian dust could be an important source of lithogenic Fe required for diatom growth in the Ross Sea. Here we investigate the provenance of size-selected dust deposited on sea ice in McMurdo Sound, south-western (SW) Ross Sea. The isotopic signature of McMurdo Sound dust (0.70533< 87Sr/86Sr< 0.70915 and -1.1 < εNd(0) <3.45)confirms that dust is locally sourced from the McMurdo Sound debris bands and comprises a two-component mixture of McMurdo Volcanic Group and southern Victoria Land lithologies. In addition, the provenance of lithogenic sediment trapped in the water column was investigated, and the isotopic signature (εNd(0) =3.9, 87Sr/86Sr = 0.70434) is differentiated from long-range transported dust originating from South America and Australia. Elevated lithogenic accumulation rates in deeper sediment traps in the Ross Sea suggest that sinking articles in the water column cannot simply result from dust input at the surface. This discrepancy can be best explained by significant upwelling and remobilization of lithogenic Fe from the sea floor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy