SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wolf Christiane) ;lar1:(umu)"

Sökning: WFRF:(Wolf Christiane) > Umeå universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
2.
  • Mishra, Laxmi S., 1983- (författare)
  • FtsH metalloproteases and their pseudo-proteases in the chloroplast envelope of Arabidopsis thaliana
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • By cleaving peptide bonds, proteases either activate or degrade proteins and maintain protein quality control in response to various developmental stimuli and environmental factors. My work has focused on elucidating the role of the filamentation temperature sensitive protein H (FtsH) proteases. FtsHs belong to a membrane-embedded class of proteases found in eubacteria, animals and plants, which are located in the organelles of endosymbiosis (mitochondria and chloroplasts). They possess an AAA+ (ATPase associated with various cellular activities) and a peptidase M41 domain containing the HEXXH consensus sequence in the Zn2+ metalloprotease domain. FtsH proteases are known to form ring-like homo- or hetero-hexameric complexes. Arabidopsis thaliana, the model plant used in this study, contains seventeen AtFtsH proteases, of which twelve are presumably proteolytically active and five presumably proteolytic inactive members, known as AtFtsHi (i for inactive). In AtFtsHi members, the HEXXH motif is either deleted (AtFtsHi3) or mutated (AtFtsHi1, 2, 4, 5). Twelve AtFtsHs (AtFtsH 1, 2, 5–9, 11, 12 and AtFtsHi 1-5) are targeted to the chloroplast, whereas the remaining three (AtFtsH 3, 4 and 10) are mitochondrial. In Paper I, we demonstrate that AtFtsH12 interacts with AtFtsHi1, 2, 4, 5 to form a heteromeric complex. Abundance of these AtFtsH12-AtFtsHi complexes alters the accumulation of TIC (translocon on the inner chloroplast membrane) complexes. Transgenic mi12 (miRNA) knockdown plants that express lower amounts of AtFtsH12 displayed a pale-seedling and an aberrant chloroplast phenotype. mi12 plants displayed lowered total chlorophyll (Chla+Chlb) amount compared to wild type (WT), complementation lines and native AtFtsH12 promoter overexpressor (ox12) lines. Our biochemical studies identified drastic modifications in the total proteome of mi12 seedlings. N-terminome analyses of mi12 seedlings showed undisturbed plastidic protein maturation. In Paper II, we have shown that single mutants depleted in AtFTSHI1, 2, 4 or 5 are embryo-lethal, suggesting the pseudo-proteases to have an indispensable role in seed germination. This study further identified “weak” Atftshi1, Atftshi4, Atftshi3-1(kd) and Atftshi3-2 homozygous mutants, which develop into plants with altered photosynthetic efficiency. Field experiments were performed to determine the Darwinian fitness of these homozygous as well as heterozygous AtFtsHi mutants. The results suggested AtFtsHi enzymes to be critical during early developmental stages. A complete Atftshi3 knockdown mutant (Atftshi3-1(kd)) was identified (described in Paper III), which is not embryo-lethal and tolerates drought better than WT plants. Atftshi3-1(kd) leaves were smaller with fewer and smaller stomatal aperture. Above ground, Atftshi3-1(kd) leaves displayed lowered stomatal conductance and increased WUEi (intrinsic water-use efficiency), while below ground, the root-associated bacterial community showed a typical drought stress response. Upregulated transcripts of the ABA-responsive genes in leaves of Atftshi3-1(kd) compared to WT indicate the drought tolerance to be controlled independently of ABA. To conclude, AtFtsHi pseudo-proteases affect various stages of plant development and abiotic stress management, especially drought.
  •  
3.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
4.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
5.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Arabidopsis thaliana peroxiredoxin Q is extraordinarily dynamic on the μs-ms timescale
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted as the resolving cysteine, generating an intermolecular disulphide bond to expel a second water molecule into solution. PrxQ is finally recycled to the active state by a thioredoxin dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here we have performed a detailed study of the structure and dynamics of PrxQ in both the oxidized and reduced state. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Model-free analyses of NMR spin relaxation show that PrxQ is monomeric in both oxidation states. As evident from fast R2 relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of the conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
6.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1814:12, s. 1880-1890
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (4)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Franke, Barbara (3)
Ching, Christopher R ... (3)
Agartz, Ingrid (3)
Brouwer, Rachel M (3)
Melle, Ingrid (3)
Westlye, Lars T (3)
visa fler...
Thompson, Paul M (3)
Andreassen, Ole A (3)
de Geus, Eco J. C. (3)
Martin, Nicholas G. (3)
Boomsma, Dorret I. (3)
Djurovic, Srdjan (3)
Meyer-Lindenberg, An ... (3)
Thalamuthu, Anbupala ... (3)
Cichon, Sven (3)
Rietschel, Marcella (3)
Schofield, Peter R (3)
Deary, Ian J (3)
Mattheisen, Manuel (3)
Montgomery, Grant W. (3)
Heinz, Andreas (3)
Le Hellard, Stephani ... (3)
Homuth, Georg (3)
Francks, Clyde (3)
Hartman, Catharina A ... (3)
Hottenga, Jouke-Jan (3)
Wardlaw, Joanna M. (3)
Jahanshad, Neda (3)
Crespo-Facorro, Bene ... (3)
Tordesillas-Gutierre ... (3)
Veltman, Dick J (3)
van Tol, Marie-José (3)
Sachdev, Perminder S ... (3)
Medland, Sarah E (3)
Mueller-Myhsok, Bert ... (3)
Grabe, Hans J. (3)
Saemann, Philipp G. (3)
Voelzke, Henry (3)
Wittfeld, Katharina (3)
Wright, Margaret J. (3)
Schmaal, Lianne (3)
Schork, Andrew J (3)
Teumer, Alexander (3)
Schumann, Gunter (3)
Milaneschi, Yuri (3)
Ophoff, Roel A (3)
Armstrong, Nicola J. (3)
Buckner, Randy L. (3)
de Zubicaray, Greig ... (3)
Ehrlich, Stefan (3)
visa färre...
Lärosäte
Karolinska Institutet (3)
Uppsala universitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy