SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wollack Edward J.) "

Sökning: WFRF:(Wollack Edward J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McCarrick, Heather, et al. (författare)
  • The Simons Observatory Microwave SQUID Multiplexing Detector Module Design
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μmux). Simons Observatory will use 49 modules containing 70,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA √Hz . This impacts the projected SO mapping speed by <8%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
  •  
2.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
3.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
4.
  • Bergner, Jenny, et al. (författare)
  • Astrochemistry With the Orbiting Astronomical Satellite for Investigating Stellar Systems
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemistry along the star- and planet-formation sequence regulates how prebiotic building blocks—carriers of the elements CHNOPS—are incorporated into nascent planetesimals and planets. Spectral line observations across the electromagnetic spectrum are needed to fully characterize interstellar CHNOPS chemistry, yet to date there are only limited astrochemical constraints at THz frequencies. Here, we highlight advances to the study of CHNOPS astrochemistry that will be possible with the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS). OASIS is a NASA mission concept for a space-based observatory that will utilize an inflatable 14-m reflector along with a heterodyne receiver system to observe at THz frequencies with unprecedented sensitivity and angular resolution. As part of a survey of H2O and HD toward ∼100 protostellar and protoplanetary disk systems, OASIS will also obtain statistical constraints on the emission of complex organics from protostellar hot corinos and envelopes as well as light hydrides including NH3 and H2S toward protoplanetary disks. Line surveys of high-mass hot cores, protostellar outflow shocks, and prestellar cores will also leverage the unique capabilities of OASIS to probe high-excitation organics and small hydrides, as is needed to fully understand the chemistry of these objects.
  •  
5.
  • Dachlythra, Nadia, 1993-, et al. (författare)
  • The Simons Observatory : Beam Characterization for the Small Aperture Telescopes
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a mapmaker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the mapmaker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions, and input beams. We additionally show the reconstruction quality as a function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within an ∼1.5% error for a multipole range ℓ = 30–700 and an ∼0.5% error for a multipole range ℓ = 50–200. We conclude by using a harmonic-domain component separation algorithm to verify that the beam reconstruction errors and biases observed in our analysis do not significantly bias the Simons Observatory r-measurement
  •  
6.
  • Walker, Christopher K., et al. (författare)
  • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): “Following water from galaxies, through protostellar systems, to oceans”
  • 2021
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11820
  • Konferensbidrag (refereegranskat)abstract
    • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power >106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 µm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have >20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives.
  •  
7.
  • Xu, Zhilei, et al. (författare)
  • The Simons Observatory : metamaterial microwave absorber and its cryogenic applications
  • 2021
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 60:4, s. 864-874
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to 65∘ angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.
  •  
8.
  • Chesmore, Grace E., et al. (författare)
  • Simons Observatory : characterizing the Large Aperture Telescope Receiver with radio holography
  • 2022
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 61:34, s. 10309-10319
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments. 
  •  
9.
  • Chesmore, Grace E., et al. (författare)
  • Simons Observatory HoloSim-ML : machine learning applied to the efficient analysis of radio holography measurements of complex optical systems
  • 2021
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 60:29, s. 9029-9035
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micrometer accuracy. We apply this approach to the example of the Simons Observatory 6 m telescope.
  •  
10.
  • Gudmundsson, Jón E., et al. (författare)
  • The Simons Observatory : modeling optical systematics in the Large Aperture Telescope
  • 2021
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 60:4, s. 823-837
  • Tidskriftsartikel (refereegranskat)abstract
    • We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy