SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Woolway R. I.) "

Sökning: WFRF:(Woolway R. I.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : AMER METEOROLOGICAL SOC. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
2.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
3.
  • Vanderkelen, I., et al. (författare)
  • Global Heat Uptake by Inland Waters
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat uptake is a key variable for understanding the Earth system response to greenhouse gas forcing. Despite the importance of this heat budget, heat uptake by inland waters has so far not been quantified. Here we use a unique combination of global‐scale lake models, global hydrological models and Earth system models to quantify global heat uptake by natural lakes, reservoirs, and rivers. The total net heat uptake by inland waters amounts to 2.6 ± 3.2 ×1020 J over the period 1900–2020, corresponding to 3.6% of the energy stored on land. The overall uptake is dominated by natural lakes (111.7%), followed by reservoir warming (2.3%). Rivers contribute negatively (‐14%) due to a decreasing water volume. The thermal energy of water stored in artificial reservoirs exceeds inland water heat uptake by a factor ∼10.4. This first quantification underlines that the heat uptake by inland waters is relatively small, but non‐negligible.
  •  
4.
  • Bruce, Louise C, et al. (författare)
  • A multi-lake comparative analysis of the General Lake Model (GLM) : Stress-testing across a global observatory network
  • 2018
  • Ingår i: Environmental Modelling & Software. - 1364-8152 .- 1873-6726. ; 102, s. 274-291
  • Tidskriftsartikel (refereegranskat)abstract
    • The modelling community has identified challenges for the integration and assessment of lake models due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-dimensional lake model and apply it to 32 lakes from a global observatory network. The data set included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity analysis was conducted for nine parameters that governed the surface heat exchange and mixing efficiency. There was low correlation between input data uncertainty and model performance and predictions of temperature were less sensitive to model parameters than prediction of thermocline depth and Schmidt stability. The study provides guidance to where the general model approach and associated assumptions work, and cases where adjustments to model parameterisations and/or structure are required.
  •  
5.
  • Wilson, Harriet L., et al. (författare)
  • Variability in epilimnion depth estimations in lakes
  • 2020
  • Ingår i: Hydrology and Earth System Sciences. - 1027-5606 .- 1607-7938. ; 24:11, s. 5559-5577
  • Tidskriftsartikel (refereegranskat)abstract
    • The epilimnion is the surface layer of a lake typically characterised as well mixed and is decoupled from the metalimnion due to a steep change in density. The concept of the epilimnion (and, more widely, the three-layered structure of a stratified lake) is fundamental in limnology, and calculating the depth of the epilimnion is essential to understanding many physical and ecological lake processes. Despite the ubiquity of the term, however, there is no objective or generic approach for defining the epilimnion, and a diverse number of approaches prevail in the literature. Given the increasing availability of water temperature and density profile data from lakes with a high spatio-temporal resolution, automated calculations, using such data, are particularly common, and they have vast potential for use with evolving long-term globally measured and modelled datasets. However, multi-site and multi-year studies, including those related to future climate impacts, require robust and automated algorithms for epilimnion depth estimation. In this study, we undertook a comprehensive comparison of commonly used epilimnion depth estimation methods, using a combined 17-year dataset, with over 4700 daily temperature profiles from two European lakes. Overall, we found a very large degree of variability in the estimated epilimnion depth across all methods and thresholds investigated and for both lakes. These differences, manifesting over high-frequency data, led to fundamentally different understandings of the epilimnion depth. In addition, estimations of the epilimnion depth were highly sensitive to small changes in the threshold value, complex thermal water column structures, and vertical data resolution. These results call into question the custom of arbitrary method selection and the potential problems this may cause for studies interested in estimating the ecological processes occurring within the epilimnion, multi-lake comparisons, or long-term time series analysis. We also identified important systematic differences between methods, which demonstrated how and why methods diverged. These results may provide rationale for future studies to select an appropriate epilimnion definition in light of their particular purpose and with awareness of the limitations of individual methods. While there is no prescribed rationale for selecting a particular method, the method which defined the epilimnion depth as the shallowest depth, where the density was 0.1 kg m−3 more than the surface density, may be particularly useful as a generic method.
  •  
6.
  • Woolway, R. I., et al. (författare)
  • Northern Hemisphere Atmospheric Stilling Accelerates Lake Thermal Responses to a Warming World
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 46:21, s. 11983-11992
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change, in particular the increase in air temperature, has been shown to influence lake thermal dynamics, with climatic warming resulting in higher surface temperatures, stronger stratification, and altered mixing regimes. Less studied is the influence on lake thermal dynamics of atmospheric stilling, the decrease in near-surface wind speed observed in recent decades. Here we use a lake model to assess the influence of atmospheric stilling, on lake thermal dynamics across the Northern Hemisphere. From 1980 to 2016, lake thermal responses to warming have accelerated as a result of atmospheric stilling. Lake surface temperatures and thermal stability have changed at respective rates of 0.33 and 0.38 degrees C/decade, with atmospheric stilling contributing 15% and 27% of the calculated changes, respectively. Atmospheric stilling also resulted in a lengthening of stratification, contributing 23% of the calculated changes. Our results demonstrate that atmospheric stilling has influenced lake thermal responses to warming.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Woolway, R.I, et al. (författare)
  • Lake surface temperatures
  • 2016
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 97:8, s. S17-S18
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy