SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wu Gang) "

Search: WFRF:(Wu Gang)

  • Result 1-10 of 71
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  •  
4.
  • 2019
  • Journal article (peer-reviewed)
  •  
5.
  • Bhat, Goutam, et al. (author)
  • NTIRE 2022 Burst Super-Resolution Challenge
  • 2022
  • In: 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2022). - : IEEE. - 9781665487399 - 9781665487405 ; , s. 1040-1060
  • Conference paper (peer-reviewed)abstract
    • Burst super-resolution has received increased attention in recent years due to its applications in mobile photography. By merging information from multiple shifted images of a scene, burst super-resolution aims to recover details which otherwise cannot be obtained using a simple input image. This paper reviews the NTIRE 2022 challenge on burst super-resolution. In the challenge, the participants were tasked with generating a clean RGB image with 4x higher resolution, given a RAW noisy burst as input. That is, the methods need to perform joint denoising, demosaicking, and super-resolution. The challenge consisted of 2 tracks. Track 1 employed synthetic data, where pixel-accurate high-resolution ground truths are available. Track 2 on the other hand used real-world bursts captured from a handheld camera, along with approximately aligned reference images captured using a DSLR. 14 teams participated in the final testing phase. The top performing methods establish a new state-of-the-art on the burst super-resolution task.
  •  
6.
  • Fan, Qunping, et al. (author)
  • Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer
  • 2023
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 62:36
  • Journal article (peer-reviewed)abstract
    • Achieving both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (E-loss) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D(1)AD(2) (D-1=thieno[3,2-b]thiophene and D-2=selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D-1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high V-oc and J(sc), due to the reduced E-loss and efficient charge transfer properties. Inspired by the high V-oc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized E-loss, the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.
  •  
7.
  • Huang, Zi-Gang, et al. (author)
  • Role of collective influence in promoting cooperation
  • 2008
  • In: Europhysics letters. - Les Ulis : European Physical Society. - 0295-5075 .- 1286-4854. ; 84:5, s. 50008-
  • Journal article (peer-reviewed)abstract
    • The collective influence on the individuals' behavior have attracted much attention, and interesting phenomena such as social facilitation and social loafing have been studied. In this paper, we consider how the collective influence affects the evolution of cooperation in a structured population of individuals who nourish and benefit from public goods in groups. Individuals are supposed to distribute endowments to different groups to nourish the corresponding public goods. The collective influence is indicated by a tunable parameter α, with larger α corresponding to the players' higher preference to contribute more to the larger groups, which is similar to the social-facilitation effect in the real world, whereas, with smaller α corresponding to individuals' contrary preference, i.e., the social-loafing effect. Interestingly, we find that the heterogeneity of public-goods setting favors cooperation. Furthermore, the system where social loafing occurs performs better than that with social facilitation, in the case of heterogeneous formation.
  •  
8.
  • Pecunia, Vincenzo, et al. (author)
  • Roadmap on energy harvesting materials
  • 2023
  • In: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
9.
  • Wu, Jianlong, et al. (author)
  • Study on Direct Reduction in Carbon-Bearing Pellets Using Biochar
  • 2023
  • In: Sustainability. - : MDPI AG. - 2071-1050. ; 15:24
  • Journal article (peer-reviewed)abstract
    • As a renewable, carbon-neutral raw material, the application of biomass in steel production is conducive to reducing greenhouse gas emissions and achieving green and sustainable development in the steel industry. The heating and reduction process of a rotary hearth furnace was simulated under laboratory conditions to roast and reduce biochar carbon-bearing pellets with coke powder and anthracite carbon-bearing pellets as a comparison. This was conducted to investigate the impact of biochar as a reducing agent on the direct reduction in carbon-bearing pellets. Under various reduction temperatures, carbon/oxygen ratios, and reduction times, tests were conducted on the compressive strength and metallization rate of carbon-bearing pellets made using typical binder bentonite. Results show that with the increase in reduction temperature, the metallization rate of pellets increases, while the compressive strength initially decreases and then increases, reaching the lowest point at 900 degrees C and 1000 degrees C. When the ratio of carbon to oxygen is between 0.7 and 0.9 and the reduction time is between 15 and 25 min, carbon-bearing pellets meet the requirements of both the metallization rate and the strength, with the metallization rate above 80%. However, severe volume swelling and low strength were observed in biochar carbon-bearing pellets at 900 degrees C and 1000 degrees C, which negatively impacted multi-layered charging and heat transfer efficiency in the blast furnace. Therefore, a novel laboratory-prepared binder was introduced in the preparation process of biochar carbon-bearing pellets at an appropriate addition ratio of 5-8%. Without producing any swelling concerns, the inclusion of this binder considerably improved the compression strength and metallization rate of the pellets, enabling them to fulfill the standards for raw materials in the blast furnace.
  •  
10.
  • Yu, Wenjin, et al. (author)
  • Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Background: It is a critical challenge to diagnose leptomeningeal metastasis (LM), given its technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more time to classify cells under a microscope.Objective: This study aims to establish a deep learning model to classify cancer cells in CSF, thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.Method: The cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from 90 LM patients in the research. We used two deep convolutional neural networks (CNN) models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by Resnet-inception-V2. We evaluated the performance of the proposed models on two external datasets and compared them with the results from 42 doctors of various levels of experience in the human-machine tests. Furthermore, we develop a computer-aided diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.Results: With respect to the validation set, the mean average precision (mAP) of CNN1 is over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-machine tests, the accuracy of CNN1 is similar to the results from experts, with higher accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10% higher than that of experts, with a time consumption of only one-third of that consumed by an expert. Using the CAD software saves 90% working time of cytologists.Conclusion: A deep learning method has been developed to assist the LM diagnosis with high accuracy and low time consumption effectively. Thanks to labeled data and step-by-step training, our proposed method can successfully classify cancer cells in the CSF to assist LM diagnosis early. In addition, this unique research can predict cancer’s primary source of LM, which relies on cytomorphologic features without immunohistochemistry. Our results show that deep learning can be widely used in medical images to classify cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the proposed method is significantly higher than that of specialist doctors, and its performance is better than that of junior doctors and interns. The application of CNNs and CAD software may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 71
Type of publication
journal article (60)
conference paper (6)
research review (2)
book chapter (2)
licentiate thesis (1)
Type of content
peer-reviewed (67)
other academic/artistic (4)
Author/Editor
Wang, Gang (5)
Lei, Fumin (4)
Liu, Yang (3)
Sidén, Johan, 1975- (3)
Ma, Jing (3)
Zhang, Lei (3)
show more...
Chen, Xiang (3)
Nilsson, Mats (2)
Wang, Mei (2)
Wu, Lei (2)
Martin, Javier (2)
Zhang, Kai (2)
Kominami, Eiki (2)
Andersson, Anna (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
Bae, Sang-Cheol (2)
Bang, So-Young (2)
Gregersen, Peter K. (2)
Klareskog, Lars (2)
De Milito, Angelo (2)
Laurell, Fredrik (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Sun, Licheng, 1962- (2)
Li, Jian (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Padyukov, Leonid (2)
Rantapää-Dahlqvist, ... (2)
Lopez-Otin, Carlos (2)
Liu, Gang (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Uversky, Vladimir N. (2)
Harris, James (2)
Zhang, Yi (2)
Zhang, Hong (2)
Zhang, Li (2)
Zorzano, Antonio (2)
Wang, Jianmin (2)
Gedman, Amanda Larso ... (2)
Dang, Jinjun (2)
Nakitandwe, Joy (2)
Holmfeldt, Linda (2)
show less...
University
Royal Institute of Technology (18)
Umeå University (11)
Linköping University (11)
Lund University (10)
Uppsala University (9)
Karolinska Institutet (9)
show more...
Stockholm University (7)
Mid Sweden University (4)
Chalmers University of Technology (4)
University of Gothenburg (3)
Swedish University of Agricultural Sciences (3)
Mälardalen University (2)
Halmstad University (1)
Örebro University (1)
Swedish Museum of Natural History (1)
show less...
Language
English (71)
Research subject (UKÄ/SCB)
Natural sciences (34)
Engineering and Technology (19)
Medical and Health Sciences (17)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view