SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xiong Shizhao 1985) "

Sökning: WFRF:(Xiong Shizhao 1985)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agostini, Marco, 1987, et al. (författare)
  • Designing a Safe Electrolyte Enabling Long‐Life Li/S Batteries
  • 2019
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 12:18, s. 4176-4184
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium–sulfur (Li/S) batteries suffer from “shuttle” reactions in which soluble polysulfide species continuously migrate to and from the Li metal anode. As a consequence, the loss of active material and reactions at the surface of Li limit the practical applications of Li/S batteries. LiNO3 has been proposed as an electrolyte additive to reduce the shuttle reactions by aiding the formation of a stable solid electrolyte interphase (SEI) at the Li metal, limiting polysulfide shuttling. However, LiNO3 is continuously consumed during cycling, especially at low current rates. Therefore, the Li/S battery cycle life is limited by the LiNO3 concentration in the electrolyte. In this work, an ionic liquid (IL) [N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethylsulfonyl)imide] was used as an additive to enable longer cycle life of Li/S batteries. By tuning the IL concentration, an enhanced stability of the SEI and lower flammability of the solutions were demonstrated, that is, higher safety of the battery. The Li/S cell built with a high sulfur mass loading (4 mg cm−2) and containing the IL-based electrolyte demonstrated a stable capacity of 600 mAh g−1 for more than double the number of cycles of a cell containing LiNO3 additive.
  •  
2.
  • Brige, Amandine, et al. (författare)
  • A comparative study of hydroxyethylcellulose-based solid polymer electrolytes for solid state Zn batteries
  • 2023
  • Ingår i: NANO SELECT. - : Wiley. - 2688-4011. ; 4:1, s. 102-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Rechargeable zinc metal batteries are greener and safer alternative to lithium batteries, but they suffer from poor reversibility due to growth of zinc dendrites and water splitting reactions of aqueous electrolytes. One strategy to overcome these drawbacks is replacing aqueous electrolyte with solid polymer electrolyte (SPE). In this work, we examine the possibility of fabricating solid electrolyte from a bio-based polymer, hydroxyethylcellulose (HEC), with the aim to further increase the sustainability of zinc batteries. Various types of zinc salts, drying procedures and the salt concentrations are investigated for their impact on the ionic conductivity, structure, and phase behavior of as-prepared polymer electrolytes. It is found that HEC has a good film-forming ability compared with commonly used poly(ethylene oxide) but its low salt-dissociation capability leads to an ionic conductivity of 10(-6) S cm(-1) even at the elevated temperature of 110 degrees C, hindering the possibility of solely utilizing HEC as matrix of solid electrolyte. Our results suggest that introducing a new polymer with higher salt-dissociation capability or lower glass transition temperature into the HEC matrix can be a reliable way to build solid polymer electrolytes with sufficient ionic conductivity and good mechanical property for future zinc batteries.
  •  
3.
  • Calcagno, Giulio, 1990, et al. (författare)
  • Effect of Nitrogen Doping on the Performance of Mesoporous CMK-8 Carbon Anodes for Li-Ion Batteries
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Designing carbonaceous materials with heightened attention to the structural properties such as porosity, and to the functionalization of the surface, is a growing topic in the lithium-ion batteries (LIBs) field. Using a mesoporous silica KIT-6 hard template, mesoporous carbons belonging to the OMCs (ordered mesoporous carbons) family, namely 3D cubic CMK-8 and N-CMK-8 were synthesized and thoroughly structurally characterized. XPS analysis confirmed the successful introduction of nitrogen, highlighting the nature of the different nitrogen atoms incorporated in the structure. The work aims at evaluating the electrochemical performance of N-doped ordered mesoporous carbons as an anode in LIBs, underlining the effect of the nitrogen functionalization. The N-CMK-8 electrode reveals higher reversible capacity, better cycling stability, and rate capability, as compared to the CMK-8 electrode. Coupling the 3D channel network with the functional N-doping increased the reversible capacity to similar to 1000 mAh center dot g(-1) for the N-CMK-8 from similar to 450 mAh center dot g(-1) for the undoped CMK-8 electrode. A full Li-ion cell was built using N-CMK-8 as an anode, commercial LiFePO4, a cathode, and LP30 commercial electrolyte, showing stable performance for 100 cycles. The combination of nitrogen functionalization and ordered porosity is promising for the development of high performing functional anodes.
  •  
4.
  • Chen, Yaqi, et al. (författare)
  • Insight into the Extreme Side Reaction between LiNi0.5Co0.2Mn0.3O2 and Li1.3Al0.3Ti1.7(PO4)3 during Cosintering for All-Solid-State Batteries
  • 2023
  • Ingår i: Chemistry of Materials. - 1520-5002 .- 0897-4756. ; 35:22, s. 9647-9656
  • Tidskriftsartikel (refereegranskat)abstract
    • All-solid-sate batteries (ASSBs) with a NASICON-type solid-state electrolyte (SSE) of Li1.3Al0.3Ti1.7(PO4)3 (LATP) can be accepted as a promising candidate to significantly improve safety and energy density due to their high oxidation potential and high ionic conductivity. However, thermodynamic instability between the cathode and LATP is scarcely investigated during cosintering preparation for the integrated configuration of ASSBs. Herein, the structural compatibility between commercially layered LiNi0.5Co0.2Mn0.3O2 (NCM523) and LATP SSE was systematically investigated by cosintering at 600 °C. It is noticeable that an extreme side reaction between Li from NCM523 and phosphate from LATP happens during its cosintering process, leading to a severe phase transition from a layered to a spinel structure with high Li/Ni mixing. Consequently, the capacity of NCM523 is lost during the preparation of the NCM523-LATP composite cathode. Based on this, we suggested that the interface modification of the NCM523/LATP interface is valued significantly to inhibit this extreme side reaction, quickening the application of LATP-based ASSBs.
  •  
5.
  • Chen, Yaqi, et al. (författare)
  • Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendrite-free Lithium Anode
  • 2022
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium metal has been considered as the most promising anode material due to its distinguished specific capacity of 3860 mAh g–1 and the lowest reduction potential of -3.04 V versus the Standard Hydrogen Electrode. However, the practicalization of Li-metal batteries (LMBs) is still challenged by the dendritic growth of Li during cycling, which is governed by the surface properties of the electrodepositing substrate. Herein, a surface modification with indium oxide on the copper current collector via magnetron sputtering, which can be spontaneously lithiated to form a composite of lithium indium oxide and Li-In alloy, is proposed. Thus, the growth of Li dendrites is effectively suppressed via regulating the inner Helmholtz plane modified with LiInO2 to foster the desolvation of Li-ion and induce the nucleation of Li-metal in two-dimensions through electro-crystallization with Li-In alloy. Using the In2O3 modification, the Li-metal anode exhibits outstanding cyclic stability, and LMBs with lithium cobalt oxide cathode present excellent capacity retention (above 80% over 600 cycles). Enlightening, the scalable magnetron sputtering method reported here paves a novel way to accelerate the practical application of the Li anode in LMBs to pursue higher energy density.
  •  
6.
  •  
7.
  • Jiao, Xingxing, et al. (författare)
  • Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising Anode for Lithium-Ion Batteries
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:34, s. 30858-30864
  • Tidskriftsartikel (refereegranskat)abstract
    • Red phosphorus (P) has recently gained wide attention because of the high theoretical capacity of 2596 mA h/g, which has been regarded as promising anode material for lithium-ion batteries (LIBs). However, the actual application of red P in LIBs is hampered by the huge expansion of volume and low electronic conductivity. Herein, we design a kind of red phosphorus/crumpled nitrogen-doped graphene (P/CNG) nanocomposites with high capacity density and great rate performance as anode material for LIBs. This anode material was rationally fabricated through the scalable ball-milling method. The nanocomposite structure of P/CNG improves the electron conductivity and alleviates volume change of raw red P because of the three-dimension (3D) framework, massive defects and active sites of CNG sheets. As expected, the P/CNG composite shows excellent electrochemical performances, including high capacity (2522.6 mA h/g at 130 mA/g), remarkable rate capability (1340.5 mA h/g at 3900 mA/g), and great cyclability (1470.1 mA h/g at 1300 mA/g for 300 cycles). This work may provide a broad prospect for a great rate performance of P-based anode material for LIBs.
  •  
8.
  • Jiao, Xingxing, et al. (författare)
  • Electro-chemo-mechanical failure of solid-state electrolyte caused from intergranular or transgranular damage propagation in polycrystalline aggregates
  • 2024
  • Ingår i: Acta Materialia. - 1359-6454. ; 265
  • Tidskriftsartikel (refereegranskat)abstract
    • Electro-chemo-mechanical failure of solid-state electrolytes (SEs) caused by the internal growth of lithium dendrites significantly impedes the application of solid-state batteries under high applied current density. The grain boundary is usually the key to the mechanical properties of polycrystalline ceramic SEs. Here, strength and width of grain boundary in SEs that are exampled by garnet-type Li7La3Zr2O12 are evaluated under the deposition of lithium by visualizing the stress field, damage accumulation and crack propagation. The enhancement of grain boundary strength triggers a dramatic increase stress when the ratio of tensile strength between grain boundary and grain (λ) is lower than 0.9. With the variation of λ, three damage processes are revealed as intergranular-damage, inter/transgranular-damage and transgranular-damage, leading to different propagation of cracks and the transformation of intergranular failure to transgranular failure. Furthermore, the width of the grain boundary is found to induce more transgranular-damage with its widening. A critical value of grain boundary width for the formation of displacement is obtained under various strengths, as δ = 21 nm for λ = 0.2, δ = 25 nm for λ = 0.5 and δ = 31 nm for λ = 0.9. The findings in this work indicate the coupling effect of grain boundary width and strength on the failure of SEs, providing an insightful perspective for the future design of solid-state batteries.
  •  
9.
  • Jiao, Xingxing, et al. (författare)
  • Grain size and grain boundary strength: Dominative role in electro-chemo-mechanical failure of polycrystalline solid-state electrolytes
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state batteries with lithium metal anode have been accepted extensively as the competitive option to fulfill the upping requirement for safe and efficient energy devices. Nevertheless, its wide-ranging application has been impeded by the failure of solid-state electrolyte (SSE) induced by development of lithium (Li) filament. Based on the nature of polycrystalline ceramic SSE with varying grain size and boundary strength, the constitutive equation coupled with electrochemical kinetics was applied to picture the propagation of damage and corresponding disintegration caused by the development of Li filament. Based on the results, we found that the stress generated along with the growth of Li filament spreads away via the opening and sliding of grain boundary. Thus, damage occurs along grain boundaries, of which propagation behavior and damage level are controlled by grain size. Especially, over-refinement and under-refinement of grains of SSE can cause flocculent damage with inordinate damage degree and accelerate the failure time of SSE, respectively. On the other hand, the failure time is powerfully prolongated through strengthening the grain boundary of SSE. Eventually, grain size of 0.2 μm and tensile strength of grain boundary of 0.8-time-of-grain are posted as the threshold to realize the postponed failure of NASICON-based SSE. Inspiringly, electro-chemo-mechanical model in this contribution is generally applicable to other type of ceramic SSE to reveal the failure process and provide the design guideline, fostering the improvement of solid-state batteries.
  •  
10.
  • Jiao, Xingxing, et al. (författare)
  • Highly Energy-Dissipative, Fast Self-Healing Binder for Stable Si Anode in Lithium-Ion Batteries
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 31:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A double-wrapped binder has been rationally designed with high Young's modulus polyacrylic acid (PAA) inside and low Young's modulus bifunctional polyurethane (BFPU) outside to address the large inner stress of silicon anode with drastic volume changes during cycling. Harnessing the "hard to soft" gradient distribution strategy, the rigid PAA acts as a protective layer to dissipate the inner stress first during lithiation, while the elastic binder BFPU serves as a buffer layer to disperse residual stress, and thus avoids structural damage of rigid PAA. Moreover, the introduction of BFPU with fast self-healing ability can dynamically recover the microcracks arising from large stress, further ensuring the integrity of silicon anode. This multifunctional binder with smart design of double-wrapped structure provides enlightenment on enlarging the cycling life of high-energy-density lithium-ion batteries that suffer enormous volume change during the cycling process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (48)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Xiong, Shizhao, 1985 (51)
Xu, Xieyu (26)
Matic, Aleksandar, 1 ... (24)
Hwang, Jang Yeon (10)
Sun, Yang Kook (7)
Sadd, Matthew, 1994 (6)
visa fler...
Kim, Jaekook (6)
Chen, Yaqi (5)
Agostini, Marco, 198 ... (4)
Rizell, Josef, 1996 (3)
Cavallo, Carmen, 198 ... (2)
Lee, Suyeong (2)
Jung, Hun Gi (2)
Palmqvist, Anders, 1 ... (2)
Zhang, Chaofan (2)
Liu, Qiao (2)
Nitze, Florian, 1981 ... (2)
Olsson, Martina, 199 ... (2)
Mozhzhukhina, Natali ... (2)
Sun, Weiwei (2)
Yang, Yang (1)
Wang, Kai (1)
Yang, Yong (1)
Jacobsson, Per, 1958 (1)
Aggarwal, Ruchi (1)
Sonkar, Sumit Kumar (1)
Sonker, Amit Kumar, ... (1)
Westman, Gunnar, 196 ... (1)
Heo, Jungwon (1)
Ahn, Jou Hyeon (1)
Lim, Du Hyun, 1983 (1)
Aguilera Medina, Lui ... (1)
Scheers, Johan, 1979 (1)
Eriksson, Fredrik (1)
Wang, Hui (1)
Birch, Jens (1)
Marone, Federica (1)
Chen, Jian (1)
Nyholm, Leif, 1961- (1)
Zhang, Chao (1)
Idström, Alexander, ... (1)
Battaglia, Corsin (1)
Evenäs, Lars, 1976 (1)
Zubayer, Anton (1)
Chrobak, Wojciech (1)
Brige, Amandine (1)
Vorobiev, Alexei (1)
Sun, Kun (1)
Calcagno, Giulio, 19 ... (1)
Cheng, Jianli (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (52)
Uppsala universitet (2)
Linköpings universitet (1)
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (44)
Teknik (36)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy