SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Bing) ;lar1:(cth)"

Sökning: WFRF:(Xu Bing) > Chalmers tekniska högskola

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Langer, Judith, et al. (författare)
  • Present and Future of Surface-Enhanced Raman Scattering
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 14:1, s. 28-117
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article. ©
  •  
3.
  • Zhao, Bing, 1990, et al. (författare)
  • Electrically controlled spin-switch and evolution of Hanle spin precession in graphene
  • 2019
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Next generation of spintronic devices aims to utilize the spin-polarized current injection and transport to control the magnetization dynamics in the spin logic and memory technology. However, the detailed evolution process of the frequently observed bias current-induced sign change phenomenon of the spin polarization has not been examined in details and the underlying microscopic mechanism is not well understood. Here, we report the observation of a systematic evolution of the sign change process of Hanle spin precession signal in the graphene nonlocal spintronic devices at room temperature. By tuning the interface tunnel resistances of the ferromagnetic contacts to graphene, different transformation processes of Hanle spin precession signal are probed in a controlled manner by tuning the injection bias current/voltage. Detailed analysis and first-principles calculations indicate a possible magnetic proximity and the energy dependent electronic structure of the ferromagnet-graphene interface can be responsible for the sign change process of the spin signal and open a new perspective to realize a spin-switch at very low bias-current or voltage.
  •  
4.
  • Bing, Zhao, 1990, et al. (författare)
  • Unconventional Charge–Spin Conversion in Weyl-Semimetal WTe2
  • 2020
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 32:38
  • Tidskriftsartikel (refereegranskat)abstract
    • An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba–Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2, which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin–orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.
  •  
5.
  • Jiao, Xingxing, et al. (författare)
  • Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising Anode for Lithium-Ion Batteries
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:34, s. 30858-30864
  • Tidskriftsartikel (refereegranskat)abstract
    • Red phosphorus (P) has recently gained wide attention because of the high theoretical capacity of 2596 mA h/g, which has been regarded as promising anode material for lithium-ion batteries (LIBs). However, the actual application of red P in LIBs is hampered by the huge expansion of volume and low electronic conductivity. Herein, we design a kind of red phosphorus/crumpled nitrogen-doped graphene (P/CNG) nanocomposites with high capacity density and great rate performance as anode material for LIBs. This anode material was rationally fabricated through the scalable ball-milling method. The nanocomposite structure of P/CNG improves the electron conductivity and alleviates volume change of raw red P because of the three-dimension (3D) framework, massive defects and active sites of CNG sheets. As expected, the P/CNG composite shows excellent electrochemical performances, including high capacity (2522.6 mA h/g at 130 mA/g), remarkable rate capability (1340.5 mA h/g at 3900 mA/g), and great cyclability (1470.1 mA h/g at 1300 mA/g for 300 cycles). This work may provide a broad prospect for a great rate performance of P-based anode material for LIBs.
  •  
6.
  • Li, Chexin, et al. (författare)
  • Room-Temperature Non-Local Spin Transport in Few-Layer Black Phosphorus Passivated with MgO
  • 2022
  • Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X .- 2199-160X. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Black phosphorus (BP), a new member of 2D materials, is an ideal selection to construct spin-based devices due to its tunable direct bandgap and high carrier mobility. Assembling van der Waals heterostructures is the most popular method to create spintronic devices for 2D materials, especially for the easily oxidized BP. However, it is too complicated to be realized for fabricating large-scale integrated circuits in practical applications. To overcome this flaw, an oxide layer on BP simultaneously serving as the protection layer and barrier to fabricate a Co/MgO/BP-based non-local spin valve is employed. The non-local spin signals demonstrate the diffusion of pure spin current in the BP channel, which is the direct evidence of the spin injection from Co into BP. Combining the Hanle precession measurements with the Bloch equation fitting, the spin transport parameters of the few-layer BP can be extracted. The spin diffusion length λs and spin relaxation time τs are 6.15 µm and 241.7 ps, respectively. Therefore, the MgO layer in the non-local spin valve can simplify the fabrication of 2D material-based spintronic devices and accelerate their applications.
  •  
7.
  • Zhao, Bing, 1990, et al. (författare)
  • Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of topological Weyl semimetals has revealed opportunities to realize several extraordinary physical phenomena in condensed matter physics. Specifically, Weyl semimetals with strong spin-orbit coupling, broken inversion symmetry, and novel spin textures are predicted to exhibit a large spin Hall effect that can efficiently convert the charge current to a spin current. Here, we report a direct experimental observation of large spin Hall and inverse spin Hall effects in the Weyl semimetal WTe2 at room temperature obeying the Onsager reciprocity relation. We demonstrate the detection of a pure spin current generated by the spin Hall phenomenon in WTe2 by making a van der Waals heterostructure with graphene, taking advantage of its long spin coherence length and spin transmission at the heterostructure interface. These experimental findings, well supported by ab initio calculations, show a large charge-spin conversion efficiency in WTe2, which can pave the way for the utilization of spin-orbit-induced phenomena in spintronic memory and logic circuit architectures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy