SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Jiayue) ;hsvcat:1"

Sökning: WFRF:(Xu Jiayue) > Naturvetenskap

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Ruijie, et al. (författare)
  • Substantial increase in future fluvial flood risk projected in China’s major urban agglomerations
  • 2023
  • Ingår i: Communications Earth and Environment. - 2662-4435. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban land will face high fluvial flood risk against the background of climate change and urban expansion. The effect of urban spatial expansion, instead of densification of assets within existing urban cells, on flood risk has rarely been reported. Here, we project the future flood risk of seven urban agglomerations in China, home to over 750 million people. The inundated urban land areas in the future are projected to be 4 to 19 times that at present. Without considering the urban spatial expansion, the inundated urban land areas will be underestimated by 10-50%. Urban land is more likely to be inundated than non-urban land, and the newly-developed urban land will be inundated more easily than the historical urban land. The results demonstrate the urgency of integrating climate change mitigation, reasonable urban land expansion, and increased flood protection levels to minimize the flood risk in urban land.
  •  
2.
  • Du, Yong, et al. (författare)
  • Flexible n-Type Tungsten Carbide/Polylactic Acid Thermoelectric Composites Fabricated by Additive Manufacturing
  • 2018
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Flexible n-type tungsten carbide/polylactic acid (WC/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated. The preparation of an n-type polymer-based thermoelectric composite with good stability in air atmosphere via additive manufacturing holds promise for application in flexible thermoelectric devices. For WC/PLA volume ratios varying from similar to 33% to 60%, the electrical conductivity of the composites increased from 10.6 to 42.2 S/cm, while the Seebeck coefficients were in the range -11 to -12.3 V/K. The thermal conductivities of the composites varied from similar to 0.2 to similar to 0.28 Wamp;lt;boldamp;gt;mamp;lt;/boldamp;gt;-1amp;lt;boldamp;gt;Kamp;lt;/boldamp;gt;-1 at similar to 300 K.
  •  
3.
  • Du, Yong, et al. (författare)
  • Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid thermoelectric composites fabricated by additive manufacturing
  • 2020
  • Ingår i: Journal of Materiomics. - : ELSEVIER. - 2352-8478 .- 2352-8486. ; 6:2, s. 293-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid (CB/BTBA/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated from 300 K to 360 K. At 300 K, as the mass ratios of BTBAs in the composites increased from 38.5% to 71.4%, both the electrical conductivity and Seebeck coefficient of the composites increased from 5.8 S/cm to 13.3 S/cm, and from 60.2 mV/K to 119.9 mV/K, respectively, and the thermal conductivity slightly increased from 0.15 W m(-1)K(-1) to 0.25 W m(-1)K(-1), as a result, the ZT value of the composites increased from 0.004 to 0.023. As the temperature increased from 300 K to 360 K, the electrical conductivity of all the composites slightly decreased, while the thermal conductivity slowly increased, and a highest ZT value of 0.024 was achieved for the composites with 71.4% BTBAs at 320 K. Unlike traditional sterolithography, fused deposition modeling, selective laser melting, etc., this additive manufacturing process can directly print the solutions which contain inorganic fillers and polymer matrixes into almost any designed intricate geometries of thermoelectric composites, therefore this process has great potential to be used for fabrication of flexible polymer based thermoelectric composites and devices. (C) 2020 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.
  •  
4.
  • Du, Yong, et al. (författare)
  • Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites
  • 2018
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 V/K to 15.1 V/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 Wm(-1) K-2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.
  •  
5.
  • Du, Yong, et al. (författare)
  • Thermoelectric Properties of Reduced Graphene Oxide/Bi2Te3 Nanocomposites
  • 2019
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced graphene oxide (rGO)/Bi2Te3 nanocomposite powders with different contents of rGO have been synthesized by a one-step in-situ reductive method. Then, rGO/Bi2Te3 nanocomposite bulk materials were fabricated by a hot-pressing process. The effect of rGO contents on the composition, microstructure, TE properties, and carrier transportation of the nanocomposite bulk materials has been investigated. All the composite bulk materials show negative Seebeck coefficient, indicating n-type conduction. The electrical conductivity for all the rGO/Bi2Te3 nanocomposite bulk materials decreased with increasing measurement temperature from 25 degrees C to 300 degrees C, while the absolute value of Seebeck coefficient first increased and then decreased. As a result, the power factor of the bulk materials first increased and then decreased, and a power factor of 1340 mu Wm(-1)K(-2) was achieved for the nanocomposite bulk materials with 0.25 wt% rGO at 150 degrees C.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy