Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Luohao) "

Sökning: WFRF:(Xu Luohao)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
  • Xu, Luohao, et al. (författare)
  • Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds
  • 2019
  • Ingår i: ; 3:5, s. 834-844
  • Tidskriftsartikel (refereegranskat)abstract
    • Songbirds have a species number close to that of mammals and are classic models for studying speciation and sexual selection. Sex chromosomes are hotspots of both processes, yet their evolutionary history in songbirds remains unclear. We characterized genomes of 11 songbird species, with 5 genomes of bird-of-paradise species. We conclude that songbird sex chromosomes have undergone four periods of recombination suppression before species radiation, producing a gradient of pairwise sequence divergence termed 'evolutionary strata'. The latest stratum was probably due to a songbird-specific burst of retrotransposon CR1-E1 elements at its boundary, instead of the chromosome inversion generally assumed for suppressing sex-linked recombination. The formation of evolutionary strata has reshaped the genomic architecture of both sex chromosomes. We find stepwise variations of Z-linked inversions, repeat and guanine-cytosine (GC) contents, as well as W-linked gene loss rate associated with the age of strata. A few W-linked genes have been preserved for their essential functions, indicated by higher and broader expression of lizard orthologues compared with those of other sex-linked genes. We also find a different degree of accelerated evolution of Z-linked genes versus autosomal genes among species, potentially reflecting diversified intensity of sexual selection. Our results uncover the dynamic evolutionary history of songbird sex chromosomes and provide insights into the mechanisms of recombination suppression.
  • Li, Cai, et al. (författare)
  • Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment
  • 2014
  • Ingår i: GigaScience. - 2047-217X .- 2047-217X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adelie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Results: Phylogenetic dating suggests that early penguins arose similar to 60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from similar to 1 million years ago to similar to 100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Conclusions: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
  • McFarlane, S. Eryn, et al. (författare)
  • RNA sequencing provides insight into metabolic dysfunction of hybrids between a recently diverged songbird species pair
  • Annan publikation (övrigt vetenskapligt)abstract
    • Hybrid dysfunction is thought to gradually build up through the accumulation of clashes between genes as they diverge between the parental species. However, analyses of genetic incompatibilities are generally biased towards long diverged species that are kept under laboratory conditions. Here, we used RNAseq to evaluate 1) whether there was differential gene expression between naturally occurring Ficedula flycatcher hybrids and parental species in energetically expensive alimentary organs, and 2) if such differential gene expression was, based on Gene Ontology (GO) terms, functionally related to Resting Metabolic Rate (RMR) and energy production. We found substantial differential gene expression in all pairwise contrasts, but fewer functional differences between the parental species than between hybrids and either parental species. Some of the differentially expressed genes underlay the OXPHOS pathway, and significantly more than expected GO terms associated with metabolic function were differentially expressed between hybrids and either parental species in the liver. Our results corroborate the idea that tightly co-evolved mitochondrial and nuclear genes underlying the Oxidative Phosphorylation (OXPHOS) pathway can become miss-matched in hybrids and cause malfunctioning phenotypes. Mitonuclear interactions affecting OXPHOS have the potential to both quickly diverge in allopatry as populations adapt to different climate regimes and to cause hybrid genetic dysfunction at secondary contact 
  • Uebbing, Severin, et al. (författare)
  • Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken
  • 2015
  • Ingår i: ; 32:10, s. 2716-2725
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography–tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution.
  • Zhang, Guojie, et al. (författare)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  • Ålund, Murielle, et al. (författare)
  • Reproductive -omics of a wild avian speciation model unveils candidate genes for gamete interaction
  • Annan publikation (övrigt vetenskapligt)abstract
    • The complex nature of interspecific interactions contributing to reproductive isolation means that we still know little about their molecular basis. Male reproductive traits are notorious for their fast evolution at the phenotypic and genotypic level, and divergence in components of the ejaculate can lead to incompatibilities between closely related species. Making use of recent advances of molecular tools and the extensive knowledge on the biology and ecology of young sister species, here the pied (Ficedula hypoleuca) and collared flycatcher (F. albicollis), allows the identification of candidate phenotypes and the underlying genotypes maintaining species boundaries. Pied flycatcher females can avoid costly production of sterile hybrids when mated to collared flycatchers by cryptically favouring conspecific sperm. Here, we describe the testes transcriptome and sperm proteome of both species, confirm the complexity of avian sperm development and functions and identify several candidate genes for interactions between sperm and the female reproductive tract, using multiple independent measures of divergence between the species. We show that divergence at the transcriptional and translational levels can potentially lead to the evolution of reproductive incompatibilities despite low levels of sequence divergence, and suggest that integrating several -omics techniques with knowledge of the biology of naturally hybridizing species will greatly improve our understanding of the molecular basis of speciation in the near future. 
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy