SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu X.) ;mspu:(conferencepaper)"

Sökning: WFRF:(Xu X.) > Konferensbidrag

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, S. N., et al. (författare)
  • The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO. 
  •  
2.
  • Zhang, S. -N, et al. (författare)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
3.
  • Kristan, M., et al. (författare)
  • The Eighth Visual Object Tracking VOT2020 Challenge Results
  • 2020
  • Ingår i: Computer Vision. - Cham : Springer International Publishing. - 9783030682378 ; , s. 547-601
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusing on different tracking domains: (i) VOT-ST2020 challenge focused on short-term tracking in RGB, (ii) VOT-RT2020 challenge focused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 focused on long-term tracking namely coping with target disappearance and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2020 challenge focused on long-term tracking in RGB and depth imagery. Only the VOT-ST2020 datasets were refreshed. A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in the VOT-ST challenges. A new VOT Python toolkit that implements all these novelites was introduced. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net ). 
  •  
4.
  • Aamodt, K., et al. (författare)
  • Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
  • 2010
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 5
  • Konferensbidrag (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 mu m in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10(5) charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
  •  
5.
  • Moody, G., et al. (författare)
  • Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides
  • 2016
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9781628419818 ; 9746
  • Konferensbidrag (refereegranskat)abstract
    • Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is 1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. (c) (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
  •  
6.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
7.
  •  
8.
  • Fang, Chao, 1991, et al. (författare)
  • HARQ in Poisson Point Process-based Heterogeneous Networks
  • 2015
  • Ingår i: IEEE Vehicular Technology Conference. - 1550-2252. - 9781479980888 ; 2015
  • Konferensbidrag (refereegranskat)abstract
    • Hybrid automatic repeat request (HARQ) plays animportant role in improving the transmission efficiency and the robustness of wireless networks. Considering K-tier heterogeneous networks (HetNets) and modelling the locations of the base stations (BSs) as a homogeneous Poisson point process (PPP), this paper investigates the performance of HetNets implementing HARQ. We give closed-form expressions for the coverage probability and the per-user throughput with HARQ and show that using HARQ can indeed improve the coverage probability. However, depending on the channel conditions, the per-userthroughput of the HetNets may decrease by the implementation of HARQ. Furthermore, we show that the small cell density has negligible effect on the coverage probability and per-user throughput, and the per-user throughput may increase with the small cell path loss.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy