SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yan Max) ;hsvcat:2"

Sökning: WFRF:(Yan Max) > Teknik

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fu, Qiliang, 1986-, et al. (författare)
  • Transparent plywood as a load-bearing and luminescent biocomposite
  • 2018
  • Ingår i: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 164, s. 296-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.
  •  
2.
  • Li, Yuanyuan, et al. (författare)
  • Towards centimeter thick transparent wood through interface manipulation
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 6:3, s. 1094-1101
  • Tidskriftsartikel (refereegranskat)abstract
    • Transparent wood is an attractive structural material for energy-saving buildings due to its high optical transmittance, good thermal insulation, and high toughness. However, thick highly transparent wood is challenging to realize. In the current work, highly transparent wood (1.5 mm) with a transmittance of 92%, close to that of pure PMMA (95%), is demonstrated. The high transmittance was realized by interface manipulation through acetylation of wood template. Both experiments and electromagnetic modeling support that the improved transmittance is mainly due to elimination of interface debonding gap. By applying this method, a centimeter-thick transparent wood structure was obtained. The transparent wood could be used as a substrate for an optically tunable window by laminating a polymer dispersed liquid crystal (PDLC) film on top. The techniques demonstrated are a step towards the replacement of glass in smart windows and smart buildings.
  •  
3.
  • Lobov, Gleb S., et al. (författare)
  • Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution
  • 2015
  • Ingår i: Optical Materials Express. - : Optical Society of America. - 2159-3930 .- 2159-3930. ; 5:11, s. 2642-2647
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanofiber morphology of regioregular Poly-3- hexylthiophene (P3HT) is a 1D crystalline structure organized by π - π stacking of the backbone chains. In this study, we report the impact of electric field on the orientation and optical properties of P3HT nanofibers dispersed in liquid solution. We demonstrate that alternating electric field aligns nanofibers, whereas static electric field forces them to migrate towards the cathode. The alignment of nanofibers introduces anisotropic optical properties, which can be dynamically manipulated until the solvent has evaporated. Time resolved spectroscopic measurements revealed that the electro-optical response time decreases significantly with the magnitude of applied electric field. Thus, for electric field 1.3 V ·μm-1 the response time was measured as low as 20 ms, while for 0.65 V ·μm-1 it was 110-150 ms. Observed phenomenon is the first mention of P3HT supramolecules associated with electrooptical effect. Proposed method provides real time control over the orientation of nanofibers, which is a starting point for a novel practical implementation. With further development P3HT nanofibers can be used individually as an anisotropic solution or as an active component in a guest-host system.
  •  
4.
  • Soltanmoradi, Reyhaneh, et al. (författare)
  • Multi-resonator structure based on continuous silver thin films for transparent conductors
  • 2014
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 105:6, s. 061110-
  • Tidskriftsartikel (refereegranskat)abstract
    • A type of metal-dielectric multilayered structures is investigated theoretically and experimentally for achieving optical transparency with a high electrical conductivity. The structure in our demonstrated case comprises of two coupled metal-dielectric-metal planar optical resonators with metal-layer thicknesses near to its skin depth. Simulations show that the maximum transmittance for visible light can easily reach 90% for silver-based structures. Experimentally, the sample fabricated exhibits a transmission window with a bandwidth of 150 nm and a maximum transmittance of 76% around 643 nm wavelength at normal incidence. Its sheet resistance is measured to be less than 10 Omega/square, much smaller than that of common indium-tin-oxide films. Transparent conductors functioning for blue light and even for the whole visible light are also shown to be theoretically possible. Owing to their simple fabrication procedure as well as design flexibility, such a layered structure can serve as a compelling alternative as transparent conductors for optoelectronic devices, especially for liquid-crystal displays and light-emitting diodes.
  •  
5.
  • Koskela, Salla, et al. (författare)
  • Hemicellulose content affects the properties of cellulose nanofibrils produced from softwood pulp fibres by LPMO
  • 2022
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lytic polysaccharide monooxygenase (LPMO)-catalysed oxidation of cellulose has emerged as a green alternative to chemical modifications in the production of cellulose nanofibrils (CNFs) from wood pulp fibres. The effect of the hemicellulose content of the starting pulp fibres on the oxidation capabilities of cellulose-active LPMO is important and has not been investigated previously. In this study, the production of LPMO-oxidised CNFs was evaluated on two commercial softwood pulp fibres with different hemicellulose contents. Thin and colloidally stable CNFs were readily obtained from kraft pulp with a hemicellulose content of 16%. The preserved hemicellulose fraction in the kraft pulp enhanced the access of LPMO into the fibre cell wall, enabling the production of homogeneous CNFs with a thin width of 3.7 ± 1.7 nm. By contrast, the LPMO-oxidised dissolving pulp with a lower hemicellulose content of 4% could only be partially disintegrated into thin CNFs, leaving a large amount of cellulose microfibril aggregates with widths of around 50 to 100 nm. CNFs disintegrated from the LPMO-oxidised kraft pulp could be processed into nanopapers with excellent properties including an optical transmittance of 86%, tensile strength of 260 MPa, and Young's modulus of 16.9 GPa. Such CNFs also showed acid-triggered nanofibril gelation owing to the introduced carboxyl groups on cellulose microfibril surfaces. These results indicate that the inherent hemicelluloses present in the wood cell wall are essential for LPMO-mediated CNF production from wood pulp fibres.
  •  
6.
  • Medina, Lilian, 1992-, et al. (författare)
  • Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites—Synchrotron X-ray Scattering Analysis
  • 2019
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 52:8, s. 3131-3140
  • Tidskriftsartikel (refereegranskat)abstract
    • Nacre-inspired clay nanocomposites have excellent mechanical properties, combined with optical transmittance, gas barrier properties, and fire retardancy, but the mechanical properties are still below predictions from composite micromechanics. The properties of montmorillonite clay/nanocellulose nanocomposite hybrids are investigated as a function of clay content and show a maximum Young’s modulus as high as 28 GPa. Ultimate strength, however, decreases from 280 to 125 MPa between 0 and 80 wt % clay. Small-angle and wide-angle X-ray scattering data from synchrotron radiation are analyzed to suggest nanostructural and phase interaction factors responsible for these observations. Parameters discussed include effective platelet modulus, platelet out-of-plane orientation distribution, nanoporosity, and platelet agglomeration state.
  •  
7.
  • Liu, X., et al. (författare)
  • Biomimetic Photonic Multiform Composite for High-Performance Radiative Cooling
  • 2021
  • Ingår i: Advanced Optical Materials. - : Wiley. - 2162-7568 .- 2195-1071. ; 9:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructures on bodies of biological inhabitants in severe environments can exhibit excellent thermoregulation, which provide inspirations for artificial radiative cooling materials. However, achieving both large-scale manufacturing and flexible form-compatibility to various applications needs remains as a formidable challenge. Here a biomimetic strategy is adopted to design a thermal photonic composite inspired by the previously unexplored golden cicada's evolutionarily optimized thermoregulatory ability. A microimprint combined with phase separation method is developed for fabricating a biomimetic photonic material made of porous polymer–ceramic composite profiled in microhumps. The composite demonstrates high solar reflectance (97.6%) and infrared emissivity (95.5%) in atmospheric window, which results in a cooling power of 78 W m−2 and a maximum subambient temperature drop of 6.6 °C at noon. Moreover, the technique facilitates multiform manufacturing of the composites beyond films, as demonstrated by additive printing into general 3D structures. This work offers biomimetic approach for developing high-performance thermal regulation materials and devices. 
  •  
8.
  • Ebadi, Seyed Morteza (författare)
  • Design and Numerical Modelling of Nanoplasmonic Structures at Near-Infrared for Telecom Applications
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Industrial innovation is mostly driven by miniaturization. As a result of remarkable technological advancements in the fields of equipment, materials and production processes, transistor, the fundamental active component in conventional electronics, has shrunk in size. Semiconductor technology is unique in that all performance metrics are enhanced, while at the same time unit prices are reduced. Moore’s Law, which predicts that the number of components per chip will double every two years, was established in 1965, and the industry has been able to keep up with this prophetic prognosis since. Thermal management, on the other hand, has become a key limiting factor for current electronic circuits and is set to put a stop to Moore’s Law. Given the fact that complementary metal oxide semiconductor (CMOS) scaling is reaching fundamental limits, there are several new alternative processing devices and architectures that have been investigated for both traditional integrated circuit (IC) technologies and novel technologies, including new technologies aimed at contributing to advances in scaling progress and cost reductions in manufacturing operations in the coming decades. These factors will encourage the development of new information processing and memory systems, new technologies for integrating numerous features heterogeneously and new system architectural design layouts, among other things. Energy efficiency is advantageous from a sustainability perspective and for consumer electronics, for which fewer power-hungry components mean longer times between charges and smaller batteries. The creation of novel chip-scale tools that can aid in the transfer of information across optical frequencies and microscale photonics between nanoscale electronic devices is now a possibility. Bridging this technological gap may be achieved by plasmonics. The incorporation of plasmonic, photonic and electrical components on a single chip may lead to a number of innovative breakthroughs. Photonic integrated circuits (PICs) enable the realization of ultra-small, high-efficiency, ultra-responsive and CMOS-compatible devices that can be used in applications ranging from optical wireless communication systems (6G and beyond) and supercomputers to health and energy. This thesis provides a platform from which to design nanoplasmonic devices while facilitating high-transmission and/or absorption efficiency, miniaturized size and the use of near-infrared (NIR) wavelengths for telecom applications. With a significant amount of Internet traffic transmitted optically, communication systems are further tightening the requirements for the development of new optical devices. Several new device structures based on the metal-insulator-metal (MIM) plasmonic waveguide are proposed and investigated using performance metrics. The transmission line theory (TLM) from microwave circuit theory and coupled mode theory (CMT) is studied and employed in the design process of the nanostructures, in particular to address the losses in plasmonic-based devices, which has been the major factor hampering their widespread usage in communication systems. By taking advantage of well-established microwave circuit theory (through new design that paves the way for mitigating these losses and enabling efficient transmission of power flow in the optical devices), we have suggested a number of high-transmission efficiency nanodevices that offer highly competitive performance compared with other platforms. As a result, a promising future for plasmonic technology, which would enable design and fabrication of multipurpose and multifunctional optical devices that are efficient in terms of losses, footprint and capability of integrating active devices, is anticipated.
  •  
9.
  • Andersson, Jennie, 1986, et al. (författare)
  • Ship-scale CFD benchmark study of a pre-swirl duct on KVLCC2
  • 2022
  • Ingår i: Applied Ocean Research. - : Elsevier Ltd. - 0141-1187 .- 1879-1549. ; 123
  • Tidskriftsartikel (refereegranskat)abstract
    • Installing an energy saving device such as a pre-swirl duct (PSD) is a major investment for a ship owner and prior to an order a reliable prediction of the energy savings is required. Currently there is no standard for how such a prediction is to be carried out, possible alternatives are both model-scale tests in towing tanks with associated scaling procedures, as well as methods based on computational fluid dynamics (CFD). This paper summarizes a CFD benchmark study comparing industrial state-of-the-art ship-scale CFD predictions of the power reduction through installation of a PSD, where the objective was to both obtain an indication on the reliability in this kind of prediction and to gain insight into how the computational procedure affects the results. It is a blind study, the KVLCC2, which the PSD is mounted on, has never been built and hence there is no ship-scale data available. The 10 participants conducted in total 22 different predictions of the power reduction with respect to a baseline case without PSD. The predicted power reductions are both positive and negative, on average 0.4%, with a standard deviation of 1.6%-units, when not considering two predictions based on model-scale CFD and two outliers associated with large uncertainties in the results. Among the variations present in computational procedure, two were found to significantly influence the predictions. First, a geometrically resolved propeller model applying sliding mesh interfaces is in average predicting a higher power reduction with the PSD compared to simplified propeller models. The second factor with notable influence on the power reduction prediction is the wake field prediction, which, besides numerical configuration, is affected by how hull roughness is considered. © 2022 The Authors
  •  
10.
  • Chen, Hui (författare)
  • Light Scattering Effects in Transparent Wood Biocomposites
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transparent wood (TW) shows interesting optical properties and offers a sustainable alternative to petroleum-based polymer glasses. The influence of the TW internal structure (e.g. fiber alignment, volume fraction of cellulose, lignin content, defects from preparation process) on the optical properties is poorly understood, which limits its use in various applications. It is also true for transparent cellulose biocomposites in general. In this thesis, eco-friendly TW biocomposites are investigated. The work focuses on experimental characterization, structure-optical property relationships and possibilities to quantify such relationships.                  TWs made of delignified wood substrates with longitudinal direction of the tree parallel to the specimen surface are prepared. Relationships between anisotropic scattering and fiber alignment are studied by scattering angle measurement. Anisotropic photons distributions are compared between two fiber directions and various sample thicknesses. Next, attenuation coefficients (related to the anisotropic diffusion coefficients and absorption coefficient) for TWs are obtained by combining the photon diffusion equation with total transmittance measurements. The results indicate strong influence from the air gaps between wood substrate phase and polymer in the lumen pores on the scattering. Beside the airgaps between wood substrate and polymer, refractive index mismatch between polymer and wood substrate strongly influences the scattering. Thus, immersion liquid method (based on the total transmittance measurement) combined with a light transmission model (based on Fresnel reflection theory) is applied to estimate the refractive index of the delignified wood substrate. This facilitates TW design (i.e. the proper polymer selection for various applications) and modelling of the optical properties of delignified wood based transparent materials. Finally, extinction coefficients, Rayleigh scattering and absorption coefficients of TW are extracted from photon budget measurements combined with a light diffusion model developed. With higher volume fraction of cellulose, all these parameters are increased, although polymer-cellulose refractive index mismatch is the dominating factor controlling transmittance. The strong forward scattering in TW is analysed, and Rayleigh scattering has a strong effect on haze. The influence of lignin content on the absorption coefficient is also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (4)
annan publikation (1)
doktorsavhandling (1)
bokkapitel (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Popov, Sergei (7)
Chen, Hui (7)
Yan, Min (4)
Berglund, Lars, 1956 ... (3)
Berglund, Lars A. (3)
Liu, D. (2)
visa fler...
Wang, Xin (2)
Östling, Mikael (2)
Thylén, Lars (2)
Zhang, M (2)
Liu, X (1)
Wang, H. (1)
Zhang, D. (1)
Zhang, Y. (1)
Lu, L. (1)
Zhou, H. (1)
Berglund, Lars (1)
Ortiz Catalan, Max J ... (1)
Wang, P. (1)
Wang, Q. (1)
Bensow, Rickard, 197 ... (1)
Ren, X. (1)
Li, Yan (1)
Toprak, Muhammet S. (1)
Liu, G (1)
Rojas, Ramiro (1)
Qiu, Min (1)
Vesting, Florian, 19 ... (1)
Sjödahl, Mikael (1)
Hummelgård, Magnus, ... (1)
Örtegren, Jonas, 197 ... (1)
Andersson, Jennie, 1 ... (1)
Shiri, Alex (1)
Yixing, Jin (1)
Chengsheng, Wu (1)
Gengyao, Qiu (1)
Deng, Ganbo (1)
Queutey, Patrick (1)
Xing-Kaeding, Yan (1)
Horn, Peter (1)
Lücke, Thomas (1)
Kobayashi, Hiroshi (1)
Ohashi, Kunihide (1)
Sakamoto, Nobuaki (1)
Yang, Fan (1)
Gao, Yuling (1)
Windén, Björn (1)
Meyerson, Max (1)
Maki, Kevin (1)
Turnock, Stephen (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (20)
Umeå universitet (16)
RISE (4)
Mittuniversitetet (2)
Chalmers tekniska högskola (2)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy