SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Qiong) ;lar1:(su)"

Sökning: WFRF:(Yang Qiong) > Stockholms universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brierley, Chris M., et al. (författare)
  • Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1847-1872
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) - hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.
  •  
2.
  • Cao, Ning, 1987-, et al. (författare)
  • The role of internal feedbacks in sustaining multi-centennial variability of the Atlantic Meridional Overturning Circulation revealed by EC-Earth3-LR simulations
  • 2023
  • Ingår i: Earth and Planetary Science Letters. - 0012-821X .- 1385-013X. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant multi-centennial climate variability with a distinct peak at approximately 200 years is observed in a pre-industrial (PI) control simulation using the EC-Earth3-LR climate model. This oscillation originates predominately from the North Atlantic and displays a strong association with the Atlantic Meridional Overturning Circulation (AMOC). Our study identifies the interplay between salinity advection feedback and vertical mixing in the subpolar North Atlantic as key roles in providing the continues internal energy source to maintain this multi-centennial oscillation. The perturbation flow of mean subtropical-subpolar salinity gradients serves as positive feedback to sustain the AMOC anomaly, while the mean advection of salinity anomalies and the vertical mixing or convection acts as negative feedback, constraining the AMOC anomaly. Notably, this low-frequency variability persists even in a warmer climate with weakened AMOC, emphasizing the robustness of the salinity advection feedback mechanism.
  •  
3.
  • de Vries, Paul S., et al. (författare)
  • Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5x10(-8) is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5x10(-8)), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.
  •  
4.
  • Döscher, Ralf, et al. (författare)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
5.
  • Gravgaard Askjær, Thomas, et al. (författare)
  • Multi-centennial Holocene climate variability in proxy records and transient model simulations
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 296
  • Tidskriftsartikel (refereegranskat)abstract
    • Variability on centennial to multi-centennial timescales is mentioned as a feature in reconstructions of the Holocene climate. As more long transient model simulations with complex climate models become available and efforts have been made to compile large proxy databases, there is now a unique opportunity to study multi-centennial variability with greater detail and a large amount of data than earlier. This paper presents a spectral analysis of transient Holocene simulations from 9 models and 120 proxy records to find the common signals related to oscillation periods and geographic dependencies and discuss the implications for the potential driving mechanisms. Multi-centennial variability is significant in most proxy records, with the dominant oscillation periods around 120–130 years and an average of 240 years. Spectra of model-based global mean temperature (GMT) agree well with proxy evidence with significant multi-centennial variability in all simulations with the dominant oscillation periods around 120–150 years. It indicates a comparatively good agreement between model and proxy data. A lack of latitudinal dependencies in terms of oscillation period is found in both the model and proxy data. However, all model simulations have the highest spectral density distributed over the Northern hemisphere high latitudes, which could indicate a particular variability sensitivity or potential driving mechanisms in this region. Five models also have differentiated forcings simulations with various combinations of forcing agents. Significant multi-centennial variability with oscillation periods between 100 and 200 years is found in all forcing scenarios, including those with only orbital forcing. The different forcings induce some variability in the system. Yet, none appear to be the predominant driver based on the spectral analysis. Solar irradiance has long been hypothesized to be a primary driver of multi-centennial variability. However, all the simulations without this forcing have shown significant multi-centennial variability. The results then indicate that internal mechanisms operate on multi-centennial timescales, and the North Atlantic-Arctic is a region of interest for this aspect.
  •  
6.
  • Helsen, Michiel M., et al. (författare)
  • On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11:4, s. 1949-1965
  • Tidskriftsartikel (refereegranskat)abstract
    • The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.
  •  
7.
  • Shi, Xiaoxu, et al. (författare)
  • Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:5, s. 1047-1070
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical modeling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of seasonality, which is influenced by slow variations in the Earth's orbital parameters, plays a key role in determining the calculated seasonal cycle of the climate. In contrast to the classical calendar used today, where the lengths of the months and seasons are fixed, the angular calendar calculates the lengths of the months and seasons according to a fixed number of degrees along the Earth's orbit. When comparing simulation results for different time intervals, it is essential to account for the angular calendar to ensure that the data for comparison are from the same position along the Earth's orbit. Most models use the classical calendar, which can lead to strong distortions of the monthly and seasonal values, especially for the climate of the past. Here, by analyzing daily outputs from multiple PMIP4 model simulations, we examine calendar effects on surface air temperature and precipitation under mid-Holocene, Last Interglacial, and pre-industrial climate conditions. We came to the following conclusions. (a) The largest cooling bias occurs in boreal autumn when the classical calendar is applied for the mid-Holocene and Last Interglacial, due to the fact that the vernal equinox is fixed on 21 March. (b) The sign of the temperature anomalies between the Last Interglacial and pre-industrial in boreal autumn can be reversed after the switch from the classical to angular calendar, particularly over the Northern Hemisphere continents. (c) Precipitation over West Africa is overestimated in boreal summer and underestimated in boreal autumn when the classical seasonal cycle is applied. (d) Finally, month-length adjusted values for surface air temperature and precipitation are very similar to the day-length adjusted values, and therefore correcting the calendar based on the monthly model results can largely reduce the artificial bias. In addition, we examine the calendar effects in three transient simulations for 6-0 ka by AWIESM, MPI-ESM, and IPSL-CM. We find significant discrepancies between adjusted and unadjusted temperature values over continents for both hemispheres in boreal autumn, while for other seasons the deviations are relatively small. A drying bias can be found in the summer monsoon precipitation in Africa (in the classical calendar), whereby the magnitude of bias becomes smaller over time. Overall, our study underlines the importance of the application of calendar transformation in the analysis of climate simulations. Neglecting the calendar effects could lead to a profound artificial distortion of the calculated seasonal cycle of surface air temperature and precipitation.
  •  
8.
  • Yang, Haijun, et al. (författare)
  • Anatomizing the Ocean´s role in ENSO changes under global warming
  • 2008
  • Ingår i: Journal of climate. - 1520-0442. ; 21:24, s. 6539-6555
  • Tidskriftsartikel (refereegranskat)abstract
    • A revisit on observations shows that the tropical El Niño–Southern Oscillation (ENSO) variability, after removing both the long-term trend and decadal variation of the background climate, has been enhanced by as much as 50% during the past 50 yr. This is inconsistent with the changes in the equatorial atmosphere, which shows a slowdown of the zonal Walker circulation and tends to stabilize the tropical coupling system. The ocean role is highlighted in this paper. The enhanced ENSO variability is attributed to the strengthened equatorial thermocline that acts as a destabilizing factor of the tropical coupling system. To quantify the dynamic effect of the ocean on the ENSO variability under the global warming, ensemble experiments are performed using a coupled climate model [Fast Ocean Atmosphere Model (FOAM)], following the “1pctto2x” scenario defined in the Intergovernmental Panel on Climate Change (IPCC) reports. Term balance analyses on the temperature variability equation show that the anomalous upwelling of the mean vertical temperature gradient (referred as the “local term”) in the eastern equatorial Pacific is the most important destabilizing factor to the temperature variabilities. The magnitude of local term and its change are controlled by its two components: the mean vertical temperature gradient Tz and the “virtual vertical heat flux” −w′T′. The former can be viewed as the background of the latter and these two components are positively correlated. A stronger Tz is usually associated with a bigger upward heat flux −w′T′, which implies a bigger impact of thermocline depth variations on SST. The Tz is first enhanced during the transient stage of the global warming with a 1% yr−1 increase of CO2, and then reduced during the equilibrium stage with a fixed doubled CO2. This turnaround in Tz determines the turnaround of ENSO variability in the entire global warming period.
  •  
9.
  • Yang, Haijun, et al. (författare)
  • Heat Transport Compensation in Atmosphere and Ocean over the Past 22,000 Years
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's climate has experienced dramatic changes over the past 22,000 years; however, the total meridional heat transport (MHT) of the climate system remains stable. A 22,000-year-long simulation using an ocean-atmosphere coupled model shows that the changes in atmosphere and ocean MHT are significant but tend to be out of phase in most regions, mitigating the total MHT change, which helps to maintain the stability of the Earth's overall climate. A simple conceptual model is used to understand the compensation mechanism. The simple model can reproduce qualitatively the evolution and compensation features of the MHT over the past 22,000 years. We find that the global energy conservation requires the compensation changes in the atmosphere and ocean heat transports. The degree of compensation is mainly determined by the local climate feedback between surface temperature and net radiation flux at the top of the atmosphere. This study suggests that an internal mechanism may exist in the climate system, which might have played a role in constraining the global climate change over the past 22,000 years.
  •  
10.
  • Zhang, Qiong, et al. (författare)
  • Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:2, s. 1147-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • As global warming is proceeding due to rising greenhouse gas concentrations, the Earth system moves towards climate states that challenge adaptation. Past Earth system states are offering possible modelling systems for the global warming of the coming decades. These include the climate of the mid-Pliocene (similar to 3 Ma), the last interglacial (similar to 129-116 ka) and the mid-Holocene (similar to 6 ka). The simulations for these past warm periods are the key experiments in the Paleoclimate Model Intercomparison Project (PMIP) phase 4, contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6). Paleoclimate modelling has long been regarded as a robust out-of-sample test bed of the climate models used to project future climate changes. Here, we document the model setup for PMIP4 experiments with EC-Earth3-LR and present the large-scale features from the simulations for the mid-Holocene, the last interglacial and the mid-Pliocene. Using the pre-industrial climate as a reference state, we show global temperature changes, large-scale Hadley circulation and Walker circulation, polar warming, global monsoons and the climate variability modes - El Nino-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). EC-Earth3-LR simulates reasonable climate responses during past warm periods, as shown in the other PMIP4-CMIP6 model ensemble. The systematic comparison of these climate changes in past three warm periods in an individual model demonstrates the model's ability to capture the climate response under different climate forcings, providing potential implications for confidence in future projections with the EC-Earth model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy