SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Yunlong) "

Sökning: WFRF:(Yang Yunlong)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eleonora Hedlund, Eva-Maria, et al. (författare)
  • Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:2, s. 654-659
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of placental growth factor (PlGF) in modulation of tumor angiogenesis and tumor growth remains an enigma. Furthermore, anti-PlGF therapy in tumor angiogenesis and tumor growth remains controversial in preclinical tumor models. Here we show that in both human and mouse tumors, PlGF induced the formation of dilated and normalized vascular networks that were hypersensitive to anti-VEGF and anti-VEGFR-2 therapy, leading to dormancy of a substantial number of avascular tumors. Loss-of-function using plgf shRNA in a human choriocarcinoma significantly accelerated tumor growth rates and acquired resistance to anti-VEGF drugs, whereas gain-of-function of PlGF in a mouse tumor increased anti-VEGF sensitivity. Further, we show that VEGFR-2 and VEGFR-1 blocking antibodies displayed opposing effects on tumor angiogenesis. VEGFR-1 blockade and genetic deletion of the tyrosine kinase domain of VEGFR-1 resulted in enhanced tumor angiogenesis. These findings demonstrate that tumor-derived PlGF negatively modulates tumor angiogenesis and tumor growth and may potentially serve as a predictive marker of anti-VEGF cancer therapy.
  •  
2.
  • Hosaka, Kayoko, et al. (författare)
  • Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis
  • 2013
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723 .- 2041-1723. ; 4:2129
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-beta signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-beta and inactivation of the PDGF-beta signalling decreases integrin alpha 1 beta 1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.
  •  
3.
  • Iwamoto, Hideki, et al. (författare)
  • PlGF-induced VEGFR1-dependent vascular remodeling determines opposing antitumor effects and drug resistance to Dll4-Notch inhibitors
  • 2015
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 1:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of Dll4 (delta-like ligand 4)-Notch signaling-mediated tumor angiogenesis is an attractive approach in cancer therapy. However, inhibition of Dll4-Notch signaling has produced different effects in various tumors, and no biomarkers are available for predicting the anti-Dll4-Notch-associated antitumor activity. We show that human and mouse tumor cell-derived placental growth factor (PlGF) is a key determinant of the Dll4-Notch-induced vascular remodeling and tumor growth. In natural PlGF-expressing human tumors, inhibition of Dll4-Notch signaling markedly accelerated tumor growth by increasing blood perfusion in nonleaking tumor vasculatures. Conversely, in PlGF-negative tumors, Dll4 inhibition suppressed tumor growth by the formation of nonproductive and leaky vessels. Surprisingly, genetic inactivation of vascular endothelial growth factor receptor 1 (VEGFR1) completely abrogated the PlGF-modulated vascular remodeling and tumor growth, indicating a crucial role for VEGFR1-mediated signals in modulating Dll4-Notch functions. These findings provide mechanistic insights on PlGF-VEGFR1 signaling in the modulation of the Dll4-Notch pathway in angiogenesis and tumor growth, and have therapeutic implications of PlGF as a biomarker for predicting the antitumor benefits of Dll4 and Notch inhibitors.
  •  
4.
  • Yang, Xiaojuan, et al. (författare)
  • Vascular endothelial growth factor-dependent spatiotemporal dual roles of placental growth factor in modulation of angiogenesis and tumor growth
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:34, s. 13932-13937
  • Tidskriftsartikel (refereegranskat)abstract
    • Placental growth factor (PIGF) remodels tumor vasculatures toward a normalized phenotype, which affects tumor growth, invasion and drug responses. However, the coordinative and spatiotemporal relation between PIGF and VEGF in modulation of tumor angiogenesis and vascular remodeling is less understood. Here we report that PlGF positively and negatively modulate tumor growth, angiogenesis, and vascular remodeling through a VEGF-dependent mechanism. In two independent tumor models, we show that PlGF inhibited tumor growth and angiogenesis and displayed a marked vascular remodeling effect, leading to normalized microvessels with infrequent vascular branches and increased perivascular cell coverage. Surprisingly, elimination of VEGF gene (i.e., VEGF-null) in PIGF-expressing tumors resulted in (i) accelerated tumor growth rates and angiogenesis and (ii) complete attenuation of PIGF-induced vascular normalization. Thus, PIGF positively and negatively modulates tumor growth, angiogenesis, and vascular remodeling through VEGF-dependent spatiotemporal mechanisms. Our data uncover molecular mechanisms underlying the complex interplay between PIGF and VEGF in modulation of tumor growth and angiogenesis, and have conceptual implication for antiangiogenic cancer therapy.
  •  
5.
  • Yang, Xiaojuan, et al. (författare)
  • VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:22, s. E2900-E2909
  • Tidskriftsartikel (refereegranskat)abstract
    • The biological functions of VEGF-B in cancer progression remain poorly understood. Here, we report that VEGF-B promotes cancer metastasis through the remodeling of tumor microvasculature. Knockdown of VEGF-B in tumors resulted in increased perivascular cell coverage and impaired pulmonary metastasis of human melanomas. In contrast, the gain of VEGF-B function in tumors led to pseudonormalized tumor vasculatures that were highly leaky and poorly perfused. Tumors expressing high levels of VEGF-B were more metastatic, although primary tumor growth was largely impaired. Similarly, VEGF-B in a VEGF-A-null tumor resulted in attenuated primary tumor growth but substantial pulmonary metastases. VEGF-B also led to highly metastatic phenotypes in Vegfr1 tk(-/-) mice and mice treated with anti-VEGF-A. These data indicate that VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism. High expression levels of VEGF-B in two large-cohort studies of human patients with lung squamous cell carcinoma and melanoma correlated with poor survival. Taken together, our findings demonstrate that VEGF-B is a vascular remodeling factor promoting cancer metastasis and that targeting VEGF-B may be an important therapeutic approach for cancer metastasis.
  •  
6.
  • Yang, Yunlong, et al. (författare)
  • The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11385
  • Tidskriftsartikel (refereegranskat)abstract
    • Signalling molecules and pathways that mediate crosstalk between various tumour cellular compartments in cancer metastasis remain largely unknown. We report a mechanism of the interaction between perivascular cells and tumour-associated macrophages (TAMs) in promoting metastasis through the IL-33-ST2-dependent pathway in xenograft mouse models of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription factor in PDGF-BB-stimulated pericytes. Gain-and loss-of-function experiments validate that IL-33 promotes metastasis through recruitment of TAMs. Pharmacological inhibition of the IL-33-ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis. These findings shed light on the role of tumour stroma in promoting metastasis and have therapeutic implications for cancer therapy.
  •  
7.
  • Ali, Zaheer, et al. (författare)
  • Synchronized tissue-scale vasculogenesis and ubiquitous lateral sprouting underlie the unique architecture of the choriocapillaris
  • 2020
  • Ingår i: Developmental Biology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0012-1606 .- 1095-564X. ; 457:2, s. 206-214
  • Tidskriftsartikel (refereegranskat)abstract
    • The choriocapillaris is an exceptionally high density, two-dimensional, sheet-like capillary network, characterized by the highest exchange rate of nutrients for waste products per area in the organism. These unique morphological and physiological features are critical for supporting the extreme metabolic requirements of the outer retina needed for vision. The developmental mechanisms and processes responsible for generating this unique vascular network remain, however, poorly understood. Here we take advantage of the zebrafish as a model organism for gaining novel insights into the cellular dynamics and molecular signaling mechanisms involved in the development of the choriocapillaris. We show for the first time that zebrafish have a choriocapillaris highly similar to that in mammals, and that it is initially formed by a novel process of synchronized vasculogenesis occurring simultaneously across the entire outer retina. This initial vascular network expands by un-inhibited sprouting angiogenesis whereby all endothelial cells adopt tip-cell characteristics, a process which is sustained throughout embryonic and early post-natal development, even after the choriocapillaris becomes perfused. Ubiquitous sprouting was maintained by continuous VEGF-VEGFR2 signaling in endothelial cells delaying maturation until immediately before stages where vision becomes important for survival, leading to the unparalleled high density and lobular structure of this vasculature. Sprouting was throughout development limited to two dimensions by Bruchs membrane and the sclera at the anterior and posterior surfaces respectively. These novel cellular and molecular mechanisms underlying choriocapillaris development were recapitulated in mice. In conclusion, our findings reveal novel mechanisms underlying the development of the choriocapillaris during zebrafish and mouse development. These results may explain the uniquely high density and sheet-like organization of this vasculature.
  •  
8.
  • Yang, Yunlong, et al. (författare)
  • Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:29, s. 12018-12023
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic therapy with anti-VEGF drugs such as bevacizumab is widely used for treatment of human patients with various solid tumors. However, systemic impacts of such drugs in host healthy vasculatures remain poorly understood. Here, we show that, in mice, systemic delivery of an anti-VEGF or an anti-VEGF receptor (VEGFR)-2 neutralizing antibody caused global vascular regression. Among all examined tissues, vasculatures in endocrine glands, intestinal villi, and uterus are the most affected in response to VEGF or VEGFR-2 blockades. Thyroid vascular fenestrations were virtually completely blocked by VEGF blockade, leading to marked accumulation of intraendothelial caveolae vesicles. VEGF blockade markedly increased thyroid endothelial cell apoptosis, and withdrawal of anti-VEGF resulted in full recovery of vascular density and architecture after 14 d. Prolonged anti-VEGF treatment resulted in a significant decrease of the circulating level of the predominant thyroid hormone free thyroxine, but not the minimal isoform of triiodothyronine, suggesting that chronic anti-VEGF treatment impairs thyroid functions. Conversely, VEGFR-1-specific blockade produced virtually no obvious phenotypes. These findings provide structural and functional bases of anti-VEGF-specific drug-induced side effects in relation to vascular changes in healthy tissues. Understanding anti-VEGF drug-induced vascular alterations in healthy tissues is crucial to minimize and even to avoid adverse effects produced by currently used anti-VEGF-specific drugs.
  •  
9.
  • Cao, Renhai, et al. (författare)
  • Mouse corneal lymphangiogenesis model.
  • 2011
  • Ingår i: Nature protocols. - 1750-2799. ; 6:6, s. 817-26
  • Tidskriftsartikel (refereegranskat)abstract
    • This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for ∼14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function.
  •  
10.
  • Chen, Gefei, et al. (författare)
  • Full-Length Minor Ampullate Spidroin Gene Sequence
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203 .- 1932-6203. ; 7:12, s. e52293-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy