SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yin V) "

Search: WFRF:(Yin V)

  • Result 1-10 of 634
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G, et al. (author)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
3.
  • 2017
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Aaltonen, T., et al. (author)
  • Combination of Tevatron Searches for the Standard Model Higgs Boson in the W+W- Decay Mode
  • 2010
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:6, s. 061802-
  • Journal article (peer-reviewed)abstract
    • We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L.
  •  
9.
  • Aamodt, K., et al. (author)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=0.9 and 2.36 TeV with ALICE at LHC
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:1-2, s. 89-108
  • Journal article (peer-reviewed)abstract
    • Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.4. In the central region (vertical bar eta vertical bar < 0.5), at 0.9 TeV, we measure charged-particle pseudo-rapidity density dN(ch)/d eta = 3.02 +/- 0.01(stat.)(-0.05)(+0.08)(syst.) for inelastic interactions, and dN(ch)/d eta = 3.58 +/- 0.01 (stat.)(-0.12)(+0.12)(syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dN(ch)/d eta = 3.77 +/- 0.01(stat.)(-0.12)(+0.25)(syst.) for inelastic, and dN(ch)/d eta = 4.43 +/- 0.01(stat.)(-0.12)(+0.17)(syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +/- 0.5%(stat.)(-2.8)(+5.7)%(syst.) for inelastic and 23.7% +/- 0.5%(stat.)(-1.1)(+4.6)%(syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.
  •  
10.
  • Abelev, B., et al. (author)
  • Technical Design Report for the Upgrade of the ALICE Inner Tracking System
  • 2014
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 41:8
  • Journal article (peer-reviewed)abstract
    • LICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 634
Type of publication
journal article (620)
research review (6)
conference paper (3)
other publication (2)
Type of content
peer-reviewed (622)
other academic/artistic (9)
Author/Editor
Zhu, J. (360)
Chen, G. (309)
Kumar, A. (250)
Podesta-Lerma, P. L. ... (247)
Peters, K. (246)
Liu, Y. (240)
show more...
Li, L. (237)
Scanlon, T. (236)
Choi, S. (235)
Meyer, J. (233)
Zhou, B. (233)
Davies, G (233)
Malik, S. (233)
Meyer, A. (233)
Abbott, B. (232)
Brandt, A. (232)
Brock, R. (232)
Burdin, S. (232)
Evans, H. (232)
Fox, H. (232)
Khanov, A. (232)
Kupco, A. (232)
Lammers, S. (232)
Penning, B. (232)
Sawyer, L. (232)
Snyder, S. (232)
Stark, J. (232)
Watts, G. (232)
Haley, J. (232)
Nagy, E. (232)
Banerjee, S. (232)
Adams, M. (232)
Askew, A. (232)
Avila, C. (232)
Barberis, E. (232)
Bean, A. (232)
Bunichev, V. (232)
Cihangir, S. (232)
Cutts, D. (232)
Dominguez, A. (232)
Ellison, J. (232)
Gavrilov, V. (232)
Harder, K. (232)
Heintz, U. (232)
Johnson, M. (232)
Lincoln, D. (232)
Lipton, R. (232)
Mulhearn, M. (232)
Narain, M. (232)
Parashar, N. (232)
show less...
University
Uppsala University (412)
Lund University (147)
Stockholm University (115)
Royal Institute of Technology (91)
Karolinska Institutet (66)
University of Gothenburg (36)
show more...
Umeå University (30)
Linköping University (10)
Luleå University of Technology (7)
Swedish University of Agricultural Sciences (6)
Chalmers University of Technology (5)
Högskolan Dalarna (5)
Halmstad University (1)
Mid Sweden University (1)
show less...
Language
English (634)
Research subject (UKÄ/SCB)
Natural sciences (498)
Medical and Health Sciences (80)
Engineering and Technology (6)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view