SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yoshida T) ;hsvcat:2"

Sökning: WFRF:(Yoshida T) > Teknik

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
3.
  • Coda, S., et al. (författare)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
4.
  • Toshito, T., et al. (författare)
  • Measurements of projectile-like Be-8 and B-9 production in 200-400 MeV/nucleon C-12 on water
  • 2008
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 78:6, s. 4-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the production of the projectile-like fragments Be-8 and B-9 produced in interactions of 200 to 400 MeV/nucleon carbon ions with water, using emulsion detectors. In this Brief Report we present the first published production cross section of the projectile-like fragment B-9 in the energy region above 100 MeV/nucleon. The measured production cross sections of these nuclides were compared to calculations using a semiempirical model. We found that the measured cross sections deviate from the calculated values by a factor up to about six. This information is of importance for benchmarking and improving heavy ion nuclear reaction models.
  •  
5.
  • Toshito, T., et al. (författare)
  • Measurements of total and partial charge-changing cross sections for 200-to 400-MeV/nucleon C-12 on water and polycarbonate
  • 2007
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 75:5, s. 8-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied charged nuclear fragments produced by 200- to 400-MeV/nucleon carbon ions, interacting with water and polycarbonate, using a newly developed emulsion detector. Total and partial charge-changing cross sections for the production of B, Be, and Li fragments were measured and compared with both previously published measurements and model predictions. This study is of importance for validating and improving carbon-ion therapy treatment planning systems and for estimating the radiological risks for personnel on space missions, because carbon is a significant component of galactic cosmic rays.
  •  
6.
  • Reddy, S. R., et al. (författare)
  • Nanostructuring with Structural-Compositional Dual Heterogeneities Enhances Strength-Ductility Synergy in Eutectic High Entropy Alloy
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A lamellar (L12 + B2) AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) was severely deformed by a novel hybrid-rolling process. During hybrid-rolling, the deformation was carried out in two stages, namely cryo-rolling followed by warm-rolling at 600 °C. The strain (ε) imparted in each of these steps was identical ~1.2, resulting in a total strain of ε~2.4 (corresponding to 90% reduction in thickness). The novel processing strategy resulted in an extremely heterogeneous microstructure consisting of retained lamellar and transformed nanocrystalline regions. Each of these regions consisted of different phases having different crystal structures and chemical compositions. The novel structure-composition dual heterogeneous microstructure originated from the stored energy of the cryo-rolling which accelerated transformations during subsequent low temperature warm-rolling. The dual heterogeneous microstructure yielded an unprecedented combination of strength (~2000 MPa) and ductility (~8%). The present study for the first time demonstrated that dual structure-composition heterogeneities can be a novel microstructural design strategy for achieving outstanding strength-ductility combination in multiphase high entropy alloys.
  •  
7.
  • Kojima, K., et al. (författare)
  • Nonlinearity-Tolerant Four-Dimensional 2A8PSK Family for 5-7 Bits/Symbol Spectral Efficiency
  • 2017
  • Ingår i: Journal of Lightwave Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0733-8724 .- 1558-2213. ; 35:8, s. 1383-1391
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe in detail the recently proposed four-dimensional modulation format family based on 2-ary amplitude 8-ary phase-shift keying (2A8PSK), supporting spectral efficiencies of 5, 6, and 7 bits/symbol. These formats nicely fill the spectral efficiency gap between the dual-polarization (DP) quadrature PSK (QPSK) and DP 16-ary quadrature-amplitude modulation (16QAM), with excellent linear and nonlinear performance. Since these modulation formats just use different parity bit expressions in the same constellation, similar digital signal processing can be seamlessly used for different spectral efficiency. A series of nonlinear transmission simulation results shows that this modulation format family outperforms the conventional modulation formats at the corresponding spectral efficiency. We also investigate the adaptive equalizer for these modulation formats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy