SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younesi Reza) "

Sökning: WFRF:(Younesi Reza)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimadadi, H., et al. (författare)
  • Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni-W alloy
  • 2009
  • Ingår i: MATERIALS & DESIGN. - 0261-3069 .- 0264-1275 .- 1873-4197. ; 30:4, s. 1356-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel-tungsten with satisfactory corrosion properties is a promising alloy to replace hard chromium. Relatively high adhesion between copper substrate and electrodeposited Ni-W alloy results in patterned morphology due to crack formation. In this work, corrosion resistance of patterned Ni-W alloys comprising 0-26 at.%.W were studied by potentiodynamic polarization and EIS in a medium containing Cl-. It is shown that corrosion resistance of single phase Ni-W is superior to amorphous and dual phase coated layers. It is also found that crack density is the dominant affecting factor on corrosion resistance of amorphous Ni-W alloys.
  •  
2.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Aktekin, Burak, et al. (författare)
  • How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:6, s. 6001-6013
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.
  •  
8.
  • Aktekin, Burak, et al. (författare)
  • The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 164:4, s. A942-A948
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the electrolyte additive fluoroethylene carbonate (FEC) for Li-ion batteries has been widely discussed in literature in recent years. Here, the additive is studied for the high-voltage cathode LiNi0.5Mn1.5O4 (LNMO) coupled to Li4Ti5O12 (LTO) to specifically study its effect on the cathode side. Electrochemical performance of full cells prepared by using a standard electrolyte (LP40) with different concentrations of FEC (0, 1 and 5 wt%) were compared and the surface of cycled positive electrodes were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that addition of FEC is generally of limited use for this battery system. Addition of 5 wt% FEC results in relatively poor cycling performance, while the cells with 1 wt% FEC showed similar behavior compared to reference cells prepared without FEC. SEM and XPS analysis did not indicate the formation of thick surface layers on the LNMO cathode, however, an increase in layer thickness with increased FEC content in the electrolyte could be observed. XPS analysis on LTO electrodes showed that the electrode interactions between positive and negative electrodes occurred as Mn and Ni were detected on the surface of LTO already after 1 cycle. (C) The Author(s) 2017. Published by ECS. All rights reserved.
  •  
9.
  • Aktekin, Burak, et al. (författare)
  • Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:21, s. 11234-11248
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-voltage spinel LiNi0.5Mn1.5O4, (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO parallel to Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass loss from LNMO or increases in internal cell resistance were minor. A comparison of cell formats constructed with and without the possibility of cross-talk indicates that the parasitic reactions on LTO occur because of the transfer of reaction products from the LNMO side. The efficiency of LTO is more sensitive to temperature, causing a dramatic increase in the fading rate at 55 degrees C. These observations show how important the electrode interactions (cross-talk) can be for the overall cell behavior. Additionally, internal resistance measurements showed that the positive electrode was mainly responsible for the increase of resistance over cycling, especially at 55 degrees C. Surface characterization showed that LNMO surface layers were relatively thin when compared with the solid electrolyte interphase (SEI) on LTO. The SEI on LTO does not contribute significantly to overall internal resistance even though these films are relatively thick. X-ray absorption near-edge spectroscopy measurements showed that the Mn and Ni observed on the anode were not in the metallic state; the presence of elemental metals in the SEI is therefore not implicated in the observed fading mechanism through a simple reduction process of migrated metal cations.
  •  
10.
  • Aktekin, Burak, et al. (författare)
  • Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptions5 in order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.ReferencesA. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (99)
konferensbidrag (29)
annan publikation (17)
doktorsavhandling (5)
forskningsöversikt (3)
patent (2)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (112)
övrigt vetenskapligt (40)
populärvet., debatt m.m. (4)
Författare/redaktör
Younesi, Reza (149)
Edström, Kristina (39)
Brandell, Daniel, 19 ... (26)
Edström, Kristina, P ... (23)
Mogensen, Ronnie (18)
Hahlin, Maria (17)
visa fler...
Naylor, Andrew J. (17)
Brandell, Daniel (13)
Brant, William (13)
Gustafsson, Torbjörn (13)
Valvo, Mario (11)
Nordh, Tim, 1988- (10)
Björklund, Erik (10)
Tengstedt, Carl (9)
Edström, Kristina, 1 ... (9)
Norby, Poul (9)
Duda, Laurent (8)
Tai, Cheuk-Wai (7)
Aktekin, Burak (7)
Vegge, Tejs (6)
Björefors, Fredrik (6)
Zipprich, Wolfgang (6)
Sångeland, Christofe ... (6)
Mindemark, Jonas (6)
Maibach, Julia (6)
Johansson, Patrik (6)
Ahmadi, Majid (5)
Ma, Yue (5)
Urbonaite, Sigita (5)
Xu, Chao (4)
Sun, Junliang (4)
Massel, Felix (4)
Qiu, Zhen (4)
Asfaw, Habtom Desta, ... (4)
Roberts, Matthew R. (4)
Lindgren, Fredrik (4)
Roberts, Matthew (4)
Etman, Ahmed S. (4)
Liu, Jia (3)
Johansson, Patrik, 1 ... (3)
Guinel, Maxime J-F (3)
Younesi, Seyed Reza (3)
Hedman, Jonas (3)
Nyholm, Leif, 1961- (3)
Nyholm, Leif (3)
Hjelm, Johan (3)
Armstrong, A Robert (3)
Matsubara, Nami (3)
Nocerino, Elisabetta (3)
Saadoune, Ismael (3)
visa färre...
Lärosäte
Uppsala universitet (150)
Stockholms universitet (10)
Chalmers tekniska högskola (7)
Kungliga Tekniska Högskolan (3)
Örebro universitet (1)
RISE (1)
visa fler...
Karlstads universitet (1)
visa färre...
Språk
Engelska (156)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (146)
Teknik (20)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy