SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younesi Reza) ;pers:(Nyholm Leif 1961)"

Sökning: WFRF:(Younesi Reza) > Nyholm Leif 1961

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Colbin, Lars Olow Simon, et al. (författare)
  • Anodic dissolution of aluminum in non-aqueous electrolyte solutions for sodium-ion batteries
  • 2023
  • Ingår i: Energy Advances. - : Royal Society of Chemistry. - 2753-1457.
  • Tidskriftsartikel (refereegranskat)abstract
    • Anodic dissolution of aluminum (commonly called aluminum corrosion) is a potential issue in sodium-ion batteries. Herein, it is demonstrated how different sodium-ion battery electrolyte solutions affect this phenomenon. The type of electrolyte was critical for the presence of anodic dissolution, while the solvent appeared to alter the dissolution process. 
  •  
2.
  • Lindgren, Fredrik, et al. (författare)
  • On the Capacity Losses Seen for Optimized Nano-Si Composite Electrodes in Li-Metal Half-Cells
  • 2019
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 9:33
  • Tidskriftsartikel (refereegranskat)abstract
    • While the use of silicon‐based electrodes can increase the capacity of Li‐ion batteries considerably, their application is associated with significant capacity losses. In this work, the influences of solid electrolyte interphase (SEI) formation, volume expansion, and lithium trapping are evaluated for two different electrochemical cycling schemes using lithium‐metal half‐cells containing silicon nanoparticle–based composite electrodes. Lithium trapping, caused by incomplete delithiation, is demonstrated to be the main reason for the capacity loss while SEI formation and dissolution affect the accumulated capacity loss due to a decreased coulombic efficiency. The capacity losses can be explained by the increasing lithium concentration in the electrode causing a decreasing lithiation potential and the lithiation cut‐off limit being reached faster. A lithium‐to‐silicon atomic ratio of 3.28 is found for a silicon electrode after 650 cycles using 1200 mAhg−1 capacity limited cycling. The results further show that the lithiation step is the capacity‐limiting step and that the capacity losses can be minimized by increasing the efficiency of the delithiation step via the inclusion of constant voltage delithiation steps. Lithium trapping due to incomplete delithiation consequently constitutes a very important capacity loss phenomenon for silicon composite electrodes.
  •  
3.
  • Ma, Le Anh, 1992-, et al. (författare)
  • Strategies for Mitigating Dissolution of Solid Electrolyte Interphases in Sodium-Ion Batteries
  • 2021
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 60:9, s. 4855-4863
  • Tidskriftsartikel (refereegranskat)abstract
    • The interfacial reactions in sodium-ion batteries (SIBs) are not well understood yet. The formation of a stable solid electrolyte interphase (SEI) in SIBs is still challenging due to the higher solubility of the SEI components compared to lithium analogues. This study therefore aims to shed light on the dissolution of SEI influenced by the electrolyte chemistry. By conducting electrochemical tests with extended open circuit pauses, and using surface spectroscopy, we determine the extent of self-discharge due to SEI dissolution. Instead of using a conventional separator, beta-alumina was used as sodium-conductive membrane to avoid crosstalk between the working and sodium-metal counter electrode. The relative capacity loss after a pause of 50 hours in the tested electrolyte systems ranges up to 30 %. The solubility of typical inorganic SEI species like NaF and Na2CO3 was determined. The electrolytes were then saturated by those SEI species in order to oppose ageing due to the dissolution of the SEI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy