SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younesi Reza) ;pers:(Valvo Mario)"

Sökning: WFRF:(Younesi Reza) > Valvo Mario

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aktekin, Burak, et al. (författare)
  • How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:6, s. 6001-6013
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.
  •  
3.
  • Asfaw, Habtom D., et al. (författare)
  • Boosting the thermal stability of emulsion–templated polymers via sulfonation : an efficient synthetic route to hierarchically porous carbon foams
  • 2016
  • Ingår i: ChemistrySelect. - : Wiley. - 2365-6549. ; 1:4, s. 784-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchically porous carbon foams with specific surface areas exceeding 600 m2 g−1 can be derived from polystyrene foams that are synthesized via water-in-oil emulsion templating. However, most styrene-based polymers lack strong crosslinks and are degraded to volatile products when heated above 400 oC. A common strategy employed to avert depolymerization is to introduce potential crosslinking sites such as sulfonic acids by sulfonating the polymers. This article unravels the thermal and chemical processes leading up to the conversion of sulfonated high internal phase emulsion polystyrenes (polyHIPEs) to sulfur containing carbon foams. During pyrolysis, the sulfonic acid groups (-SO3H) are transformed to sulfone (-C-SO2-C-) and then to thioether (-C−S-C-) crosslinks. These chemical transformations have been monitored using spectroscopic techniques: in situ IR, Raman, X-ray photoelectron and X-ray absorption near edge structure spectroscopy. Based on thermal analyses, the formation of thioether links is associated with increased thermal stability and thus a substantial decrease in volatilization of the polymers.
  •  
4.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
5.
  • Asfaw, Habtom D., et al. (författare)
  • Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries : a study of structure and electrochemical performance
  • 2014
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 6:15, s. 8804-8813
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sot-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm(-2) at 0.1 mA cm(-2) (lowest rate) and 1.1 mA h cm(-2) at 6 mA cm(-2) (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
  •  
6.
  • Asfaw, Habtom Desta, 1986-, et al. (författare)
  • Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries : a study of structure and electrochemical performance
  • 2014
  • Ingår i: Nanoscale. - Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 6:15, s. 8804-8813
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
  •  
7.
  •  
8.
  • Carboni, Marco, et al. (författare)
  • Unlocking high capacities of graphite anodes for potassium-ion batteries
  • 2019
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 9:36, s. 21070-21074
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphite is considered a promising candidate as the anode for potassium-ion batteries (KIBs). Here, we demonstrate a significant improvement in performance through the ball-milling of graphite. Electrochemical techniques show reversible K-intercalation into graphitic layers, with 65% capacity retention after 100 cycles from initial capacities and extended cycling beyond 200 cycles. Such an affinity of the graphite towards storage of K-ions is explained by means of SEM and Raman analyses. Graphite ball-milling results in a gentle mechanical exfoliation of the graphene layers and simultaneous defect formation, leading to enhanced electrochemical performance.
  •  
9.
  • Liu, Chenjuan, et al. (författare)
  • 3-D binder-free graphene foam as a cathode for high capacity Li-O-2 batteries
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:25, s. 9767-9773
  • Tidskriftsartikel (refereegranskat)abstract
    • To provide energy densities higher than those of conventional Li-ion batteries, a Li-O-2 battery requires a cathode with high surface area to host large amounts of discharge product Li2O2. Therefore, reversible formation of discharge products needs to be investigated in Li-O-2 cells containing high surface area cathodes. In this study, a binder-free oxygen electrode consisting of a 3-D graphene structure on aluminum foam, with a high defect level (I-D/I-G = 1.38), was directly used as the oxygen electrode in LiO2 batteries, delivering a high capacity of about 9 x 10(4) mA h g(-1) (based on the weight of graphene) at the first full discharge using a current density of 100 mA g(graphene)(-1). This performance is attributed to the 3-D porous structure of graphene foam providing both an abundance of available space for the deposition of discharge products and a high density of reactive sites for Li-O-2 reactions. Furthermore, the formation of discharge products with different morphologies and their decomposition upon charge were observed by SEM. Some nanoscaled LiOH particles embedded in the toroidal Li2O2 were detected by XRD and visualized by TEM. The amount of Li2O2 formed at the end of discharge was revealed by a titration method combined with UV-Vis spectroscopy analysis.
  •  
10.
  • Liu, Chenjuan, 1988-, et al. (författare)
  • 3-D binder-free graphene foam as cathode for high capacity Li-O2 batteries
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488. ; 4:25, s. 9767-9773
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • To provide energy densities higher than those of conventional Li-ion batteries, a Li–O2 battery requires a cathode with high surface area to host large amounts of discharge product Li2O2. Therefore, reversible formation of discharge products needs to be investigated in Li–O2 cells containing high surface area cathodes. In this study, a binder-free oxygen electrode consisting of a 3-D graphene structure on aluminum foam, with a high defect level (ID/IG = 1.38), was directly used as the oxygen electrode in Li– O2 batteries, delivering a high capacity of about 9 *104 mA h g-1 (based on the weight of graphene) at the first full discharge using a current density of 100 mA ggraphene-1 . This performance is attributed to the 3-D porous structure of graphene foam providing both an abundance of available space for the deposition of discharge products and a high density of reactive sites for Li–O2 reactions. Furthermore, the formation of discharge products with different morphologies and their decomposition upon charge were observed by SEM. Some nanoscaled LiOH particles embedded in the toroidal Li2O2 were detected by XRD and visualized by TEM. The amount of Li2O2 formed at the end of discharge was revealed by a titration method combined with UV-Vis spectroscopy analysis. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy