SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeng L. L.) ;lar1:(ri)"

Sökning: WFRF:(Zeng L. L.) > RISE

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bender, P., et al. (författare)
  • Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multicore particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.
  •  
2.
  • Bender, P., et al. (författare)
  • Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin™R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin™XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
  •  
3.
  • Bender, P., et al. (författare)
  • Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
  • 2018
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:5, s. 3068-3077
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy