SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zetterberg H.) ;pers:(Johansson Per)"

Sökning: WFRF:(Zetterberg H.) > Johansson Per

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreasson, U., et al. (författare)
  • An enzyme activity as a potential biomarker for Alzheimer's disease.
  • 2010
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5279 .- 1552-5260. ; 6:4, s. 497-498
  • Konferensbidrag (refereegranskat)abstract
    • Background: Six different N-terminal amyloid precursor protein (APP) fragments, with molecular weight ∼12 kDa, have previously been identified in human cerebrospinal fluid (CSF). In a pilot study, both the sum of their concentrations, measured by western blot, and the relative abundance pattern, measured by mass spectrometry, were different in Alzheimer's disease (AD) patients compared to healthy controls. To test if these differences were also reflected in protease activities that possibly give rise to the ∼12 kDa fragments an enzymatic assay was developed and the activity in CSF was investigated for its potential as a biomarker for AD. Methods: The substrate in the protease activity assay was a custom made fluorochrome/quencher labeled peptide that covers the cleavage sites in APP (APP118-APP127) corresponding to the C-termini of the six ∼12 kDa APP fragments. The activity was measured in CSF from 55 AD patients and 17 controls. Results: There was a significant increase in the protease activity in CSF from AD patients compared to the controls (p = 0.001). This is in line with previous results which indicate that the sum of the ∼12 kDa fragments are elevated in AD. Results from inhibition studies strongly suggests that the enzyme responsible for the cleavage of the substrate is an aspartic protease since a sub nM IC50 value was recorded for Pepstatin A while no inhibition was observed for the cysteine protease specific inhibitor E64 at concentrations up to100 nM. Conclusions: There exists an enzymatic activity in CSF capable of cleaving a peptide substrate that spans a portion, close to the N-terminal, of APP. In a pilot study the activity is increased in AD patients compared to controls suggesting that it can be used as a biomarker.
  •  
2.
  • Johansson, Per, et al. (författare)
  • Convergence of chromogranin and amyloid metabolism in the brain.
  • 2010
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5279 .- 1552-5260. ; 6:4, s. 511-511
  • Konferensbidrag (refereegranskat)abstract
    • Background: Much is unknown regarding the regulation of amyloid precursor protein (APP) processing in the human central nervous system. It has been hypothesized that amyloidogenic APP-processing preferentially occurs in the regulated secretory pathway of neurons. To test this hypothesis we looked for correlations of APP-derived molecules in CSF with chromogranin (Cg) derived peptides, representing the regulated secretion. Methods: Patients with Alzheimer's disease (AD, N = 32), multiple sclerosis (MS, N = 50) and healthy controls (N = 70) were enrolled. CSF was analyzed for the amyloid peptides Aβ1-42, Aβx-42, Aβx-40, Aβx-38, α-cleaved soluble APP (α-sAPP), β-cleaved soluble APP (β-sAPP), and peptides derived from CgB and SgII (Secretogranin-II, CgC). We investigated CSF levels of the protease BACE1, which processes APP into Aβ, in relation to Cg-levels. Finally, we measured Cg levels in cell media from untreated and BACE1-inhibited SH-SY5Y human neuroblastoma cells. Results: CSF Cg levels correlated to sAPP and Aβ peptides in AD, MS and controls, and to CSF BACE1. Cell medium from BACE1-inhibited cells had decreased CgB levels. Conclusions: These results suggest that a large part of APP in the human central nervous system is processed in the regulated secretory pathway of neurons.
  •  
3.
  •  
4.
  • Shahim, Pashtun, 1984, et al. (författare)
  • Cerebrospinal Fluid Stanniocalcin-1 as a Biomarker for Alzheimer’s Disease and Other Neurodegenerative Disorders
  • 2017
  • Ingår i: NeuroMolecular Medicine. - : Springer Science and Business Media LLC. - 1535-1084 .- 1559-1174. ; 19:1, s. 154-160
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Springer Science+Business Media New YorkStanniocalcin-1 (STC-1) is a nerve cell-enriched protein involved in intracellular calcium homeostasis regulation. Changes in calcium regulation are hypothesized to play a role in the pathophysiology of Alzheimer’s disease (AD). The expression of STC-1 increases in response to ischemic stroke, but whether it is altered in neurodegenerative disorder, particularly Alzheimer’s disease (AD), has not been investigated before. We measured STC-1 in cerebrospinal fluid (CSF) samples from a total of 163 individuals including AD, prodromal AD (pAD), mixed AD, stable mild cognitive impairment (sMCI), and diagnoses of other dementia than AD, as well as cognitively normal controls (CNC) enrolled at academic centers in France and Sweden. STC-1 concentration was reliably measureable in all CSF samples and was significantly increased in the initial exploratory cohort of neurochemically enriched AD patients versus AD biomarker-negative controls. In the second cohort, STC-1 was increased in AD versus pAD, and other dementia disorders, but the difference was not statistically significant. In the third cohort, there was no significant difference in STC-1 concentration between AD and CNC; however, STC-1 concentration was significantly decreased in patients with other dementia disorders compared with AD and CNC. Taken together, CSF STC-1 showed an increasing trend in AD, but the findings were not consistent across the three study cohorts. In contrast, CSF STC-1 concentrations were reduced in patients with dementia diagnoses other than AD, as compared with both AD patients and CNC. The findings from these studies suggest CSF STC-1 as a potential biomarker in differential diagnosis of dementias.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy