SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zetterberg Henrik 1973 ) ;hsvcat:2"

Sökning: WFRF:(Zetterberg Henrik 1973 ) > Teknik

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rial, Alexis Moscoso, et al. (författare)
  • Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 78:4, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol.Plasma p-tau181 and NfL measured with single-molecule array technology.Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020.Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r=-0.24, P<.001; CImp: r=0.34, P<.001) and a prospective decrease in glucose metabolism (CU: r=-0.05, P=.48; CImp: r=-0.27, P<.001) and gray matter volume (CU: r=-0.19, P<.001; CImp: r=-0.31, P<.001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures.Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
  •  
2.
  • Kaya, Ibrahim, et al. (författare)
  • Delineating Amyloid Plaque Associated Neuronal Sphingolipids in Transgenic Alzheimer's Disease Mice (tgArcSwe) Using MALDI Imaging Mass Spectrometry
  • 2017
  • Ingår i: ACS Chemical Neuroscience. - : AMER CHEMICAL SOC. - 1948-7193. ; 8:2, s. 347-355
  • Tidskriftsartikel (refereegranskat)abstract
    • The major pathological hallmarks of Alzheimer's disease (AD) are the progressive aggregation and accumulation of beta-amyloid (A beta) and hyperphosphorylated tau protein into neurotoxic deposits. A beta aggregation has been suggested as the critical early inducer, driving the disease progression. However, the factors that promote neurotoxic A beta aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used on transgenic Alzheimer's disease mouse (tgArcSwe) brain tissue to investigate the sphingolipid microenvironment of individual A beta plaques and elucidate plaque-associated sphingolipid alterations. Multivariate data analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their lipid chemical profile. This approach revealed sphingolipid species that distinctly located to cortical and hippocampal deposits, whose A beta identity was further verified using fluorescent amyloid staining and immunohistochemistry. Subsequent multivariate statistical analysis of the spectral data revealed significant localization of gangliosides and ceramides species to A beta positive plaques, which was accompanied by distinct local reduction of sulfatides. These plaque-associated changes in sphingolipid levels implicate a functional role of sphingolipid metabolism in A beta plaque pathology and AD pathogenesis. Taken together, the presented data highlight the potential of imaging mass spectrometry as a powerful approach for probing A beta plaque-associated lipid changes underlying AD pathology.
  •  
3.
  • Chaudhary, Himanshu, et al. (författare)
  • Dissecting the structural organization of multiprotein amyloid aggregates using a bottom-up approach
  • 2020
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 11:10, s. 1447-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of fibrillar amyloid β (Aβ) in senile plaques is a pathological signature of Alzheimer's disease. However, senile plaques also contain many other components, including a range of different proteins. Although the composition of the plaques can be analyzed in post mortem tissue, knowledge of the molecular details of these multiprotein inclusions and their assembly processes is limited, which impedes the progress in deciphering the biochemical mechanisms associated with Aβ pathology. We here describe a bottom-up approach to monitor how proteins from human cerebrospinal fluid associate with Aβ amyloid fibrils to form plaque particles. The method combines flow cytometry and mass spectrometry proteomics and allowed us to identify and quantify 128 components of the captured multiprotein aggregates. The results provide insights in the functional characteristics of the sequestered proteins and reveal distinct interactome responses for the two investigated Aβ variants, Aβ(1-40) and Aβ(1-42). Furthermore, the quantitative data is used to build models of the structural organization of the multiprotein aggregates, which suggests that Aβ is not the primary binding target for all the proteins; secondary interactions account for the majority of the assembled components. The study elucidates how different proteins are recruited into senile plaques and establishes a new model system for exploring the pathological mechanisms of Alzheimer's disease from a molecular perspective.
  •  
4.
  • Engström, Åsa, et al. (författare)
  • Losing the identity of a hockey player : the long-term effects of concussions
  • 2020
  • Ingår i: Concussion. - : Future Medicine. - 2056-3299. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To describe what suffering multiple concussions meant for former semi-professional or professional hockey players who were forced to end their career. Results: Nine former Swedish hockey players, who once played on national or professional teams were interviewed. The interviews were analyzed with reference to hermeneutic phenomenology to interpret and explain their experiences. The theme of losing one’s identity as a hockey player was constructed from five subthemes: being limited in everyday life, returning to the hockey stadium as soon as possible, forming a post career identity, lacking understanding and support, and preventing injuries by respecting other players. Conclusion: The former hockey players struggled with developing their off-the-ice identities and with finding other sources of meaning for their lives.Lay abstractDespite considerable attention to improving the initial management of concussions suffered by hockey players, few studies have examined their long-term effects. In response, the study reported here aimed to describe what suffering multiple concussions meant for former semi-professional or professional hockey players who were forced to end their career. Nine former Swedish hockey players, who once played on national or professional teams were interviewed and the interviews were analyzed in order to interpret and explain their experiences. The overall theme was formulated as losing one’s identity as a hockey player. In conclusion, the former hockey players seem to struggle with developing their off-the-ice identities and with finding other sources of meaning for their lives.
  •  
5.
  • Gustafsson, Johan, 1976, et al. (författare)
  • Brain energy metabolism is optimized to minimize the cost of enzyme synthesis and transport
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 121:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy metabolism of the brain is poorly understood partly due to the complex morphology of neurons and fluctuations in ATP demand over time. To investigate this, we used metabolic models that estimate enzyme usage per pathway, enzyme utilization over time, and enzyme transportation to evaluate how these parameters and processes affect ATP costs for enzyme synthesis and transportation. Our models show that the total enzyme maintenance energy expenditure of the human body depends on how glycolysis and mitochondrial respiration are distributed both across and within cell types in the brain. We suggest that brain metabolism is optimized to minimize the ATP maintenance cost by distributing the different ATP generation pathways in an advantageous way across cell types and potentially also across synapses within the same cell. Our models support this hypothesis by predicting export of lactate from both neurons and astrocytes during peak ATP demand, reproducing results from experimental measurements reported in the literature. Furthermore, our models provide potential explanation for parts of the astrocyte-neuron lactate shuttle theory, which is recapitulated under some conditions in the brain, while contradicting other aspects of the theory. We conclude that enzyme usage per pathway, enzyme utilization over time, and enzyme transportation are important factors for defining the optimal distribution of ATP production pathways, opening a broad avenue to explore in brain metabolism.
  •  
6.
  • Michno, Wojciech, 1992, et al. (författare)
  • Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals A beta Aggregation Dependent Anionic Lipid Accumulations and Metabolism
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:13, s. 8130-8138
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid plaque formation constitutes one of the main pathological hallmarks of Alzheimer's disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, A beta deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric A beta into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among A beta plaques, including cored/compact- and diffuse, may be linked to their distinct A beta profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPP(Swe)) and was correlated to A beta profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localize to the diffuse A beta structures and correlate with A beta 1-42. Further, lysophospholipids implicated in neuroinflammation were increased in all A beta deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy