SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zha Dingjun) "

Sökning: WFRF:(Zha Dingjun)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Fangyi, et al. (författare)
  • A differentially amplified motion in the ear for near-threshold sound detection
  • 2011
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 14:6, s. 770-774
  • Tidskriftsartikel (refereegranskat)abstract
    • The ear is a remarkably sensitive pressure fluctuation detector. In guinea pigs, behavioral measurements indicate a minimum detectable sound pressure of ∼20 μPa at 16 kHz. Such faint sounds produce 0.1-nm basilar membrane displacements, a distance smaller than conformational transitions in ion channels. It seems that noise within the auditory system would swamp such tiny motions, making weak sounds imperceptible. Here we propose a new mechanism contributing to a resolution of this problem and validate it through direct measurement. We hypothesized that vibration at the apical side of hair cells is enhanced compared with that at the commonly measured basilar membrane side. Using in vivo optical coherence tomography, we demonstrated that apical-side vibrations peaked at a higher frequency, had different timing and were enhanced compared with those at the basilar membrane. These effects depend nonlinearly on the stimulus sound pressure level. The timing difference and enhancement of vibrations are important for explaining how the noise problem is circumvented.
  •  
2.
  • Ramamoorthy, Sripriya, et al. (författare)
  • Filtering of Acoustic Signals within the Hearing Organ
  • 2014
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 34:27, s. 9051-9058
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories.
  •  
3.
  • Ramamoorthy, Sripriya, et al. (författare)
  • The Second Filters Second Coming
  • 2015
  • Ingår i: MECHANICS OF HEARING: PROTEIN TO PERCEPTION. - : AMER INST PHYSICS. - 9780735413504
  • Konferensbidrag (refereegranskat)abstract
    • We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within the organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.
  •  
4.
  • Zha, Dingjun, et al. (författare)
  • In vivo outer hair cell length changes expose the active process in the cochlea
  • 2012
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e32757-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Mammalian hearing is refined by amplification of the sound-evoked vibration of the cochlear partition. This amplification is at least partly due to forces produced by protein motors residing in the cylindrical body of the outer hair cell. To transmit power to the cochlear partition, it is required that the outer hair cells dynamically change their length, in addition to generating force. These length changes, which have not previously been measured in vivo, must be correctly timed with the acoustic stimulus to produce amplification.METHODOLOGY/PRINCIPAL FINDINGS: Using in vivo optical coherence tomography, we demonstrate that outer hair cells in living guinea pigs have length changes with unexpected timing and magnitudes that depend on the stimulus level in the sensitive cochlea.CONCLUSIONS/SIGNIFICANCE: The level-dependent length change is a necessary condition for directly validating that power is expended by the active process presumed to underlie normal hearing.
  •  
5.
  • Zheng, Jiefu, et al. (författare)
  • Persistence of past stimulations : storing sounds within the inner ear
  • 2011
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 100:7, s. 1627-1634
  • Tidskriftsartikel (refereegranskat)abstract
    • Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy