SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Fengling) ;pers:(Shao Shuyan)"

Sökning: WFRF:(Zhang Fengling) > Shao Shuyan

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bai, Sai, et al. (författare)
  • Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 5:11, s. 8216-8222
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising fabrication method of electron transporting interlayers for solution-processed optoelectronic devices by electrophoretic deposition (EPD) of colloidal zinc oxide (ZnO) nanocrystals was demonstrated. A low voltage of 3-5 V and a short deposition time of 40 s at room temperature were found to be sufficient to generate dense and uniform ZnO thin films. The EPD ZnO nanocrystal films were applied as ETLs for inverted organic solar cell and polymer light emitting diodes (PLEDs). By optimizing the EPD processing of ZnO nanocrystal electron transporting layers (ETLs), inverted organic solar cells based on [3,4-b]-thiophene/benzodithiophene (PTB7): [6-6]-phenyl-C71-butyric acid methyl ester (PC71BM) and poly(3-hexylthiophene) (P3HT): [6-6]-phenyl-C-61-butyric acid methyl ester (PC61BM) with an average PCE of 8.4% and 4.0% were fabricated. In combination with the PLEDs and flexible devices results, we conclude that the EPD processed ZnOnanocrystal thin films can serve as high quality ETLs for solution-processed optoelectronic devices.
  •  
2.
  • Liu, Jian, et al. (författare)
  • Printable highly conductive conjugated polymer sensitized ZnO NCs as cathode interfacial layer for efficient polymer solar cells
  • 2014
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 6:11, s. 8237-8245
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a facile way to produce printable highly conductive cathode interfacial layer (CIL) for efficient polymer solar cells (PSCs) by sensitizing ZnO nanocrystals (NCs) with a blue fluorescent conjugated polymer, poly(9, 9-bis-(6-diethoxylphosphorylhexyl) fluorene) (PFEP). Herein, PFEP plays dual distinctive roles in the composite. Firstly, PFEP chains can effectively block the aggregation of ZnO NCs, leading to uniform and smooth film during solution processing via assembly on ZnO NC surfaces through their pending phosphonate groups. Secondly, PFEP can greatly improve the conductivity of ZnO NCs by charge transfer doping, that is the charge transfer from the sensitizer driven by electron-chemical potential equilibrium, which could be even more pronounced under light illumination because of light excitation of PFEP sensitizer. The increased conductivity in ZnO-PFEP layer renders more efficient electron transport and extraction compared to pristine ZnO layer. This ZnO-PFEP CIL was successfully applied to PSCs based on three polymer donor systems with different band-gaps, and efficiency enhancements from 44 to 70% were observed compared to those PSCs with pristine ZnO CIL. The highest efficiency of 7.56% was achieved in P(IID-DTC):PC70BM-based PSCs by using ZnO-PFEP film as CIL. Moreover, the enhanced conductivity due to the charge-transfer doping effect allows thick ZnO-PFEP film to be used as CIL in high-performance PSCs. Both the high conductivity and good film-forming properties of ZnO-PFEP CIL are favorable for large-scale printable PSCs, which is also verified by high-efficiency PSCs with ZnO-PFEP CIL fabricated using doctor-blading, a large-scale processing technique. The work provides an efficient printable cathode interfacial material for efficient PSCs.
  •  
3.
  • Shao, Shuyan, et al. (författare)
  • Enhanced Performance of Inverted Polymer Solar Cells by Using Poly(ethylene oxide)-Modified ZnO as an Electron Transport Layer
  • 2013
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society. - 1944-8244 .- 1944-8252. ; 5:2, s. 380-385
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report enhanced performance of inverted polymer solar cells composed of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1):[6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) blends by using poly(ethylene oxide) (PEO)-modified ZnO as an electron transport layer. It is found that PEO modification to the ZnO nanoparticle surface can effectively passivate the surface traps of ZnO, suppress the recombination loss of carriers, reduce the series resistance, and improve the electrical coupling of ZnO/active layer. Consequently, both the short-circuit current (J(SC)) and the fill factor (FF) of the inverted solar cells are considerably improved. The resulting power conversion efficiency (PCE) is improved to 5.64% as compared to 4.5% of the reference device using a ZnO electron transport layer. Moreover, this approach can also successfully improve the J(SC) and FF of anther inverted solar cell composed of poly[N-9 -hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-dithienyl-2,1,3-benzothiadiazole)] (PCDTBT):PC71BM blends. The PCE of the device based on the PEO-modified ZnO layer is increased to 6.59% from 5.39% of the reference device based on the ZnO layer.
  •  
4.
  • Shao, Shuyan, et al. (författare)
  • In Situ Formation of MoO3 in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells
  • 2013
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlag Berlin. - 1614-6832 .- 1614-6840. ; 3:3, s. 349-355
  • Tidskriftsartikel (refereegranskat)abstract
    • A solution-processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3-PEDOT:PSS). This MoO3-PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1):[6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) blends using MoO3-PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS-based device. More importantly, the device with MoO3-PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3-PEDOT:PSS implies the potential for low-cost roll-to-roll fabrication of high-efficiency polymer solar cells with long-term stability at ambient conditions.
  •  
5.
  • Shao, Shuyan, et al. (författare)
  • Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells
  • 2013
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier. - 0927-0248 .- 1879-3398. ; 118, s. 43-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of hybrid solar cells composed of polymer and ZnO is mainly hindered by the defects of ZnO. Here, we investigate the effects of ZnO nanoparticle surface modification with poly(ethylene oxide) (PEO) on the performance of bulk heterojunction hybrid solar cells based on poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles. The reference device using ZnO nanoparticles as electron acceptor shows an open-circuit voltage (VOC) of 0.83 V, a short-circuit current (JSC) of 3.00 mA/cm2, a fill factor (FF) of 0.46 and a power conversion efficiency (PCE) of 1.15%. After modification with very small amount of PEO, the PCE will be enhanced, which is attributed to less surface traps of ZnO nanoparticles with PEO modification. With optimized PEO (0.05%) modified ZnO nanoparticles as electron acceptors, the device typically shows a VOC of 0.86 V, a JSC of 3.84 mA/cm2, a FF of 0.51 and a PCE of 1.68% due to less recombination loss of carriers, smaller series resistance, and improved electrical coupling between ZnO nanoparticle and MEH-PPV. However, further increase of PEO content to 0.3% will deteriorate device performance.
  •  
6.
  • Zheng, Kaibo, et al. (författare)
  • Fast Monolayer Adsorption and Slow Energy Transfer in CdSe Quantum Dot Sensitized ZnO Nanowires
  • 2013
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society. - 1089-5639 .- 1520-5215. ; 117:29, s. 5919-5925
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of similar to 4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy