SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang He) ;hsvcat:4"

Sökning: WFRF:(Zhang He) > Lantbruksvetenskap

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Faji, et al. (författare)
  • Genetic architecture of grain yield in bread wheat based on genome-wide association studies
  • 2019
  • Ingår i: BMC Plant Biology. - : BioMed Central. - 1471-2229. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIdentification of loci for grain yield (GY) and related traits, and dissection of the genetic architecture are important for yield improvement through marker-assisted selection (MAS). Two genome-wide association study (GWAS) methods were used on a diverse panel of 166 elite wheat varieties from the Yellow and Huai River Valleys Wheat Zone (YHRVWD) of China to detect stable loci and analyze relationships among GY and related traits.ResultsA total of 326,570 single nucleotide polymorphism (SNP) markers from the wheat 90K and 660K SNP arrays were chosen for GWAS of GY and related traits, generating a physical distance of 14,064.8Mb. One hundred and twenty common loci were detected using SNP-GWAS and Haplotype-GWAS, among which two were potentially functional genes underpinning kernel weight and plant height (PH), eight were at similar locations to the quantitative trait loci (QTL) identified in recombinant inbred line (RIL) populations in a previous study, and 78 were potentially new. Twelve pleiotropic loci were detected on eight chromosomes; among these the interval 714.4-725.8Mb on chromosome 3A was significantly associated with GY, kernel number per spike (KNS), kernel width (KW), spike dry weight (SDW), PH, uppermost internode length (UIL), and flag leaf length (FLL). GY shared five loci with thousand kernel weight (TKW) and PH, indicating significantly affected by two traits. Compared with the total number of loci for each trait in the diverse panel, the average number of alleles for increasing phenotypic values of GY, TKW, kernel length (KL), KW, and flag leaf width (FLW) were higher, whereas the numbers for PH, UIL and FLL were lower. There were significant additive effects for each trait when favorable alleles were combined. UIL and FLL can be directly used for selecting high-yielding varieties, whereas FLW can be used to select spike number per unit area (SN) and KNS.ConclusionsThe loci and significant SNP markers identified in the present study can be used for pyramiding favorable alleles in developing high-yielding varieties. Our study proved that both GWAS methods and high-density genetic markers are reliable means of identifying loci for GY and related traits, and provided new insight to the genetic architecture of GY.
  •  
2.
  • Wang, Chunyu, et al. (författare)
  • Modelling water and energy fluxes with an explicit representation of irrigation under mulch in a maize field
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 326
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, water-saving irrigation plays a vital role in agricultural ecosystems to achieve sustainable food pro-duction under climate change. Irrigation under mulch (IUM) system has been widely used in modern agricultural ecosystems due to its high water use efficiency, but it remains unclear how each component of the water and energy processes responds to this agricultural management practice. Current modeling approaches are inade-quate in investigating the impacts of IUM management on water-energy balance, which have shown more complicated than non-mulched management. Therefore, this study provided an explicit simulation of water and energy fluxes in IUM system using a process-oriented ecosystem model-CoupModel and the three years of the eddy covariance (EC) measurements. Based on Monte Carlo and the multiple model performance evaluation criteria, most of the model sensitive parameters were well constrained and 32 potentially important parameters, e.g., iscovevap, the fraction of mulch coverage, were identified to characterize the impacts of plastic mulching on energy balance and water transport. After proper calibration, the coefficient of determination (R2) for measured and simulated soil temperature (T) and soil water content (SWC) was 0.79 and 0.60, respectively, and the R2 for T and SWC during the validation period were 0.91 and 0.71, respectively. Furthermore, we found that there was a strong coupling between the parameters of the water and energy processes, which would restrict the simulation results due to the correlation between the parameters and the evaluation indices. This study presented a sys-tematic model parameters calibration in the agricultural ecosystem implemented with IUM and provided with a more comprehensive understanding of the water and energy balance in cropland. These results would help agricultural model development with more detailed considerations of the water-saving management.
  •  
3.
  • Martínez Barrio, Álvaro, et al. (författare)
  • The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing
  • 2016
  • Ingår i: eLIFE. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.
  •  
4.
  • Ishfaq, Muhammad, et al. (författare)
  • Improvement of nutritional quality of food crops with fertilizer : a global meta-analysis
  • 2023
  • Ingår i: Agronomy for Sustainable Development. - : Springer Nature. - 1774-0746 .- 1773-0155. ; 43:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Providing the world’s population with sufficient and nutritious food through sustainable food systems is a major challenge of the twenty-first century. Fertilizer use is a major driver of crop yield, but a comprehensive synthesis of the effect of fertilizer on the nutritional quality of food crops is lacking. Here we performed a comprehensive global meta-analysis using 7859 data pairs from 551 field experiment-based articles published between 1972 and 2022, assessing the contribution of fertilization with a wide set of plant nutrients to the nutritional quality of food crops (i.e., fruits, vegetables, cereals, pulses/oil crops, and sugar crops). On average, fertilizer application improved crop yield by 30.9% (CI: 28.2–33.7%) and nutritional quality (referring to all nutritionally relevant components assessed; carbohydrates, proteins, oil, vitamin C, representative mineral nutrients, and total soluble solids) by 11.9% (CI: 10.7–12.1%). The improvements were largely nutrient- and crop species dependent, with vegetables being the most responsive. Potassium, magnesium, and micronutrients played important roles in promoting crop nutritional quality, whereas the combined application of inorganic and organic source(s) had the greatest impact on quality. Desirable climatic conditions and soil properties (i.e., silt loam, soil organic matter 2.5–5.0%, and pH 4.5–8.5) supported further enhancements. Considering cross-continent responsiveness, the increase in the nutritional quality of food crops with fertilizer application was greatest in Africa. In a nutshell, our findings pave the way towards a quantitative understanding of nutrient management programs and responsible plant nutrition solutions that foster the sustainable production of nutritious and healthy food crops for human consumption.
  •  
5.
  • He, Yuanju, et al. (författare)
  • Effects of blackberry polysaccharide on the quality improvement of boiled chicken breast
  • 2023
  • Ingår i: FOOD CHEMISTRY-X. - : Elsevier BV. - 2590-1575. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Blackberry polysaccharide was isolated from blackberry powder with 70% ethanol. The crude polysaccharide was composed of 95.44% glucose, 2.01% arabinose, 1.81% galactose and 0.74% glucuronic acid. Chicken breast meat was only marinated with different concentrations of the isolated blackberry polysaccharide (1 g/kg, 3 g/kg) for 24 h at a ratio of material to liquid of 1:3, and boiled at 80celcius for 1 h. The differences in texture, water distribution and volatile flavor components among different groups (adding 0,1,3 g/kg blackberry polysaccharide) were investigated. The results showed that the addition of blackberry polysaccharide could significantly improve the hardness of chicken breast, the transformation of free water to bound water, the overall flavor characteristics of the control group and the addition of different concentrations of blackberry polysaccharide were significantly different, and the concentration of volatile flavor substances in boiled chicken breast was reduced.
  •  
6.
  • Lamichhaney, Sangeet, 1984-, et al. (författare)
  • Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax)
  • 2016
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 48:1, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The ruff is a Palearctic wader with a spectacular lekking behavior where highly ornamented males compete for females1,2,3,4. This bird has one of the most remarkable mating systems in the animal kingdom, comprising three different male morphs (independents, satellites and faeders) that differ in behavior, plumage color and body size. Remarkably, the satellite and faeder morphs are controlled by dominant alleles5,6. Here we have used whole-genome sequencing and resolved the enigma of how such complex phenotypic differences can have a simple genetic basis. The Satellite and Faeder alleles are both associated with a 4.5-Mb inversion that occurred about 3.8 million years ago. We propose an evolutionary scenario where the Satellite chromosome arose by a rare recombination event about 500,000 years ago. The ruff mating system is the result of an evolutionary process in which multiple genetic changes contributing to phenotypic differences between morphs have accumulated within the inverted region.
  •  
7.
  • Liang, Kongqiu, et al. (författare)
  • A modified critical load assessment method of heavy metals in paddy soil at large scale
  • 2023
  • Ingår i: Journal of Cleaner Production. - 0959-6526 .- 1879-1786. ; 416
  • Tidskriftsartikel (refereegranskat)abstract
    • The environmental capacity of agro-ecosystem is the basis of sustainable development of agriculture, but this is hard to evaluate quantitatively due to complex input and output processes of heavy metals. Therefore, in this study, leaching of heavy metals based on PROFILE weathering model were integrated into the steady-state critical load (SSCL) of heavy metals. The results showed that the leaching rates of Hg, As, Cd, Cr, Pb, Cu and Zn in paddy soil were 0.08, 4.69, 0.22, 44.31, 18.13, 21.96 and 64.42 g/ha ‧a, respectively, while the leaching rates were significantly correlated with pH, CaO, TFe2O3 and Corg.. Atmospheric deposition was the main input source of heavy metals in agricultural soil, while rice plant uptake and leaching were the main output pathways. The spatial distribution of SSCL were mainly affected by the content of heavy metals in soil, Aw (specific area of soil mineral), and ρ (bulk density). Values of SSCL hardly changed after about 40 years (Hg≈0.02 kg/ha, As≈0.60 kg/ha, Cd≈0.07 kg/ha, Cr≈ 5.59 kg/ha, Pb≈3.55 kg/ha, Cu≈1.49 kg/ha and Zn≈4.45 kg/ha). However, the sensitivity analysis indicated that soil leaching had 24.30%-27.90% positive effects on SSCL model. Based on the relationship among leaching, pH, standard limit and SSCL of heavy metals, the standard limit could be appropriately raised to cope with the increased human activities on the premise of the ecological capacity. Thus, the SSCL model provides a new insight for the establishment of environment management in agricultural soils.
  •  
8.
  • Niu, Guoxiang, et al. (författare)
  • Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
  • 2024
  • Ingår i: Forest Ecosystems. - 2095-6355. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Forest soils in tropical and subtropical areas store a significant amount of carbon. Recent frameworks to assess soil organic matter (SOM) dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter (POM vs. MAOM) is a promising method for identifying how SOM contributes to reducing global warming. Soil macrofauna, earthworms, and millipedes have been found to play an important role in facilitating SOM processes. However, how these two co-existing macrofaunae impact the litter decomposition process and directly impact the formation of POM and MAOM remains unclear. Methods: Here, we set up a microcosm experiment, which consisted of 20 microcosms with four treatments: earthworm and litter addition (E), millipedes and litter addition (M), earthworm, millipedes, and litter addition (E+M), and control (only litter addition) in five replicates. The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes. After incubating the samples for 42 days, the litter properties (mass, C, and N contents), soil physicochemical properties, as well as the C and N contents, and POM and MAOM 13C abundance in the 0–5 and 5–10 ​cm soil layers were measured. Finally, the relative influences of soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed. Results: The litter mass, C, and N associated with all four treatments significantly decreased after incubation, especially under treatment E+M (litter mass: −58.8%, litter C: −57.0%, litter N: −75.1%, respectively), while earthworm biomass significantly decreased under treatment E. Earthworm or millipede addition alone showed no significant effects on the organic carbon (OC) and total nitrogen (TN) content in the POM fraction, but joint addition of both significantly increased OC and TN regardless of soil depth. Importantly, all three macrofauna treatments increased the OC and TN content and decreased the 13C abundance in the MAOM fraction. More than 65% of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties. Changes in the OC distribution in the 0–5 ​cm soil layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi (AMF), while those in the 5–10 ​cm layer are probably caused by increases in soil exchangeable Ca and Mg, in addition to fungi and gram-negative (GN) bacteria. The observed TN distribution changes in the 0–5 ​cm soil likely resulted from a decrease in soil pH and increases in AMF, GN, and gram-negative (GP) bacteria, while TN distribution changes in the 5–10 ​cm soil could be explained by increases in exchangeable Mg and GN bacteria. Conclusions: The results indicate that the coexistence of earthworms and millipedes can accelerate the litter decomposition process and store more C in the MAOM fractions. This novel finding helps to unlock the processes by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil macrofauna in maintaining C-neutral atmospheric conditions under global climate change.
  •  
9.
  • Wang, Chunyu, et al. (författare)
  • Water use efficiency control for a maize field under mulched drip irrigation
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 857
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural ecosystem water use efficiency (WUE) is an important indicator reflecting carbon-water coupling, but its control mechanisms in managed fields remain unclear. In order to reveal the influencing factors of WUE in the agricultural field under mulched drip irrigation (DM), we carried out the 8-year continuous observations in a maize field from Northwestern China. The structural equation model, relative importance analysis and principal component analysis were used to quantify the regulation effects of environmental and biological factors on WUE at different time scales, in different growth stages and under different hydrothermal conditions. The results showed that annual WUE varied between 2.18 g C Kg−1 H2O and 3.60 g C Kg−1 H2O, with a multi-year mean of 2.91 g C Kg−1 H2O. The total effects of air temperature on the daily WUE in the whole growth period, the vegetative growth stage, the warm and dry years, the cold and wet years, and the warm and wet years were the largest, with values of 0.61, 0.80, 0.70, 0.70 and 0.91 respectively. However, vapor pressure deficit and net radiation had the largest total effect in the cold and dry years (−0.63) and the reproductive growth stage (−0.49), respectively. Leaf biomass played a leading role in regulating the daily and interannual WUE, and the relative importance of leaf biomass to WUE in the vegetative growth stage was up to 75 %. In the warm and wet years, the relative importance of root biomass to WUE was 33 %, slightly higher than that of leaf biomass (31 %). At the same time, we found that Ta has the potential to increase WUE under future climate warming. Our results improve the understanding of carbon-water coupling mechanisms and provide important enlightenment on how crop ecosystems should adapt to future climate change.
  •  
10.
  • Zhong, Ziqian, 1995, et al. (författare)
  • Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:32
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy