SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Li) ;mspu:(doctoralthesis)"

Sökning: WFRF:(Zhang Li) > Doktorsavhandling

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lopez Cabezas, Ana, 1980- (författare)
  • Nanofibrillar Materials for Organic and Printable Electronics
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, organic electronics have attracted great attention due to their multiple advantages such as light weight, flexibility, large area fabrication and cost-effective production processes. The recent progress in fabricating organic electronic devices has been achieved with the development of new materials which provide competing functionalities to the electronics devices.  However, as it happens with all type of technologies, organic electronics is not free from challenges. In the latest OE-A Roadmap for organic and printed electronics (2011), the “red brick walls” were identified, and the following three main challenges were pointed out as the potential roadblocks from the material point of view: electrical performance, solution processability (especially formulations in non-toxic solvents) and environmental stability. Currently there is a significant increasing interest in optimizing or developing novel materials to meet those requirements. This thesis presents processing development and study of nanofibrillar materials and deals with the optimization for its applicability for organic electronics. The overall work presented in the thesis is based on three nanofibrillar materials: Polyaniline (PANI), carbon nanotubes (CNTs) and the CNT/PANI composite. First, the solution processability of carbon nanotubes and polyaniline is studied respectively, and through covalent and non-covalent methods, stable aqueous dispersions of these materials are successfully achieved. Second, a composite consisting of multi-walled carbon nanotubes (MWCNTs) and PANI with a core-shell structure is developed and characterized. The investigation of the effects of the loading and type of nanotubes incorporated in the composite material, led to understanding on the fundamental theory underlying the composite morphology. Based on those findings and by carefully optimizing the synthesis procedure, water dispersible MWCNT/PANI nanofibrillar composite is successfully synthesized becoming compatible with solution processable techniques, such as spray coating and potentially with printing technology. With the incorporation of carbon nanotubes, the nanofibrillar composite reaches conductivities 20 times higher than that of the pure polymer. Moreover, the presence of the nanotubes in the composite material decelerates up to 60 times the thermal ageing of its conductivity, making the polymer more robust and suitable for possible manufacturing processes. Furthermore, the composite material still retains the advantageous properties of PANI: electrochromism, tunable conductivities, and sensing capabilities. Third, the stable dispersions of PANI, CNTs and MWCNT/PANI composite were effectively deposited by spray coating technique on several low-cost substrates (PET, PEN, polyimide and papers), and homogeneous, flexible, large-area films were fabricated. Additionally, by spraying the materials on pre-fabricated inkjet printed electrodes, a pH sensor based on the MWCNT/PANI composite and a humidity sensor based on functionalized MWCNTs capable of working at GHz range were demonstrated, which shows that the nanofibrillar materials studied in this thesis work are promising sensor materials for wireless application at ultra-high frequency (UHF) band. Finally, the humidity sensor was integrated into a sensor-box demonstrating a hybrid interconnection platform where printed electronics can be seamlessly integrated with silicon-based electronics. The integration closes the gap between the two technologies, anticipating the adaption of organic electronic technologies.
  •  
2.
  • Ahlberg, Patrik, 1985- (författare)
  • Graphene Implementation Study in Semiconductor Processing
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Graphene, with its two-dimensional nature and unique properties, has for over a decade captured enormous interests in both industry and academia. This work tries to answer the question of what would happen to graphene when it is subjected to various processing conditions and how this would affect the graphene functionality. The focus is placed on its ability to withstand different thin-film deposition environments with regard to the implementation of graphene in two application areas: as a diffusion barrier and in electronic devices.With single-layer graphene films grown in-house by means of chemical vapor deposition (CVD), four techniques among the well-established thin-film deposition methods are studied in detail: atomic layer deposition (ALD), evaporation, sputter-deposition and spray-deposition. And in this order, these methods span a large range of kinetic impact energies from low to high. Graphene is known to have a threshold displacement energy of 22 eV above which carbon atoms are ejected from the lattice. Thus, ALD and evaporation work with energies below this threshold, while sputtering and spraying may involve energies above. The quality of the graphene films undergone the various depositions is mainly evaluated using Raman spectroscopy.Spray deposition of liquid alloy Ga-In-Sn is shown to require a stack of at least 4 layers of graphene in order to act as an effective barrier to the Ga diffusion after the harsh spray-processing. Sputter-deposition is found to benefit from low substrate temperature and high chamber pressure (thereby low kinetic impact energy) so as to avoid damaging the graphene. Reactive sputtering should be avoided. Evaporation is non-invasiveness with low kinetic impact energy and graphene can be subjected to repeated evaporation and removal steps without losing its integrity. With ALD, the effects on graphene are of different nature and they are investigated in the field-effect-transistor (FET) configuration. The ALD process for deposition of Al2O3 films is found to remove undesired dopants from the prior processing and the Al2O3 films are shown to protect the graphene channel from doping by oxygen. When the substrate is turned hydrophobic by chemical treatment prior to graphene transfer-deposition, a unipolar transistor behavior is obtained.
  •  
3.
  • Chen, Xi (författare)
  • Silicon Nanowire Field-Effect Devices as Low-Noise Sensors
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the past decades, silicon nanowire field-effect transistors (SiNWFETs) have been explored for label-free, highly sensitive, and real-time detections of chemical and biological species. The SiNWFETs are anticipated for sensing analyte at ultralow concentrations, even at single-molecule level, owing to their significantly improved charge sensitivity over large-area FETs. In a SiNWFET sensor, a change in electrical potential associated with biomolecular interactions in close proximity to the SiNW gate terminal can effectively control the underlying channel and modulate the drain-to-source current (IDS) of the SiNWFET. A readout signal is therefore generated. This signal is primarily determined by the surface properties of the sensing layer on the gate terminal, with sensitivity close up to the Nernstian limit widely demonstrated. To achieve a high signal-to-noise ratio (SNR), it is essential for the SiNWFETs to possess low noise of which intrinsic device noise is one of the major components. In metal-oxide-semiconductor (MOS)-type FETs, the intrinsic noise mainly results from carrier trapping/detrapping at the gate oxide/semiconductor interface and it is inversely proportional to the device area.This thesis presents a comprehensive study on design, fabrication, and noise reduction of SiNWFET-based sensors on silicon-on-oxide (SOI) substrate. A novel Schottky junction gated SiNWFET (SJGFET) is designed and experimentally demonstrated for low noise applications. Firstly, a robust process employing photo- and electron-beam mixed-lithography was developed to reliably produce sub-10 nm SiNW structures for SiNWFET fabrication. For a proof-of-concept demonstration, MOS-type SiNWFET sensors were fabricated and applied for multiplexed ion detection using ionophore-doped mixed-matrix membranes as sensing layers. To address the fundamental noise issue of the MOS-type SiNWFETs, SJGFETs were fabricated with a Schottky (PtSi/silicon) junction gate on the top surface of the SiNW channel, replacing the noisy gate oxide/silicon interface in the MOS-type SiNWFETs. The resultant SJGFETs exhibited a close-to-ideal gate coupling efficiency (60 mV/dec) and significantly reduced device noise compared to reference MOS-type SiNWFETs. Further optimization was performed by implementing a three-dimensional Schottky junction gate wrapping both top surface and two sidewalls of the SiNW channel. The tri-gate SJGFETs with optimized geometry exhibited significantly enhanced electrostatic control over the channel, thereby confined IDS in the SiNW bulk, which greatly improved the device noise immunity to the traps at bottom buried oxide/silicon interface. Finally, a lateral bipolar junction transistor (LBJT) was also designed and fabricated on a SOI substrate aiming for immediate sensor current amplification. Integrating SJGFETs with LBJTs is expected to significantly suppress environmental interference and improve the overall SNR especially under low sensor current situations.
  •  
4.
  • Hinnemo, Malkolm, 1986- (författare)
  • On the Road to Graphene Biosensors
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biosensors are devices that detect biological elements and then transmit a readable signal. Biosensors can automatize diagnostics that would otherwise have to be performed by a physician or perhaps not be possible to perform at all. Current biosensors are however either limited to particular diseases or prohibitively expensive. In order to further the field, sensors capable of many parallel measurements at a lower cost need to be developed. Field effect transistor (FET) based sensors are possible candidates for delivering this, mainly by allowing miniaturization. Smaller sensors could be cheaper, and enable parallel measurements.Graphene is an interesting material to use as the channel of FET-sensors. The low electrochemical reactivity of its plane makes it possible to have graphene in direct contact with the sample liquid, which enhances the signal from impedance changes. Graphene-FET based impedance sensors should be able to sense almost all possible analytes and allow for scaling without losing sensitivity.In this work the steps needed to make graphene based biosensors are presented. An improved graphene transfer is described which by using low pressure to dry the graphene removes most contamination. A method to measure the contamination of graphene by surface enhanced Raman scattering is presented. Methods to produce double gated and electrolyte gated graphene transistors on a large scale in an entirely photolithographic process are detailed. The deposition of 1-pyrenebutyric acid (PBA) on graphene is studied. It is shown that at high surface concentrations the PBA stands up on graphene and forms a dense self-assembled monolayer. A new process of using Raman spectroscopy data to quantify adsorbents was developed in order to quantify the molecule adsorption. Biosensing has been performed in two different ways. Graphene FETs have been used to read the signal generated by a streaming potential setup. Using FETs in this context enables a more sensitive readout than what would be possible without them. Graphene FETs have been used to directly sense antibodies in high ionic strength. This sensing was done by measuring the impedance of the interface between the FET and the electrolyte.
  •  
5.
  • Hu, Qitao (författare)
  • Silicon Nanowire Based Electronic Devices for Sensing Applications
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Silicon nanowire (SiNW) based electronic devices fabricated with a complementary metal-oxide-semiconductor (CMOS) compatible process have wide-range and promising applications in sensing area. These SiNW sensors own high sensitivity, low-cost mass production possibility, and high integration density. In this thesis, we design and fabricate SiNW electronic devices with the CMOS-compatible process on silicon-on-insulator (SOI) substrates and explore their applications for ion sensing and quantum sensing. The thesis starts with ion sensing using SiNW field-effect transistors (SiNWFETs). The specific interaction between a sensing layer and analyte generates a change of local charge density and electrical potential, which can effectively modulate the conductance of SiNW channel. Multiplexed detection of molecular (MB+) and elemental (Na+) ions is demonstrated using a SiNWFET array, which is functionalized with ionophore-incorporated mixed-matrix membranes (MMMs). As a follow-up, polyethylene glycol (PEG) doping strategy is explored to suppress interference from the hydrophobic molecular ion and expand the multiplexed detection range. Then, the SiNW is downscaled to sub-10 nm with a gate-oxide-free configuration for single charge detection in liquid. We directly observe the capture and emission of a single H+ ion with individually activated Si dangling bonds (DBs) on the SiNW surface. This work demonstrates the unprecedented ability of the sub-10 nm SiNWFET for investigating the physics of the solid/liquid interface at single charge level.Apart from ion sensing, the SiNWFET can be suspended and act as a nanoelectromechanical resonator aiming for electrically detecting potential quantized mechanical vibration at low temperature. A suspended SiNW based single-hole transistor (SHT) is explored as a nanoelectromechanical resonator at 20 mK. Mechanical vibration is transduced to electrical readout by the SHT, and the transduction mechanism is dominated by piezoresistive effect. A giant effective piezoresistive gauge factor (~6000) with a strong correlation to the single-hole tunneling is also estimated. This hybrid device is demonstrated as a promising system to investigate macroscopic quantum behaviors of vibration phonon modes.Noise, including intrinsic device noise and environmental interference, is a serious concern for sensing applications of SiNW electronic devices. A H2 annealing process is explored to repair the SiNW surface defects and thus reduce the intrinsic noise by one order of magnitude. To suppress the external interference, lateral bipolar junction transistors (LBJTs) are fabricated on SOI substrate for local signal amplification of the SiNW sensors. Current gain and overall signal-to-noise ratio of the LBJTs are also optimized with an appropriate substrate voltage.
  •  
6.
  • Jablonka, Lukas, Dipl.-NanoSc. (författare)
  • Contacts and Interconnects for Germanium-based Monolithic 3D Integrated Circuits
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Three-dimensional integrated circuits have great potential for further increasing the number of transistors per area by stacking several device tiers on top of each other and without the need to continue the evermore complicated and expensive down-scaling of transistor dimensions. Among the different approaches towards the realization of such circuits, the monolithic approach, i.e. the tier-by-tier fabrication on a single substrate, is the most promising one in terms of integration density. Germanium is chosen as a substrate material instead of silicon in order to take advantage of its low fabrication temperatures as well as its high carrier mobilities. In this thesis, the work on two key components for the realization of such germanium-based three-dimensional integrated circuits is presented:the source/drain contacts to germanium the interconnects.As a potential source/drain contact material, nickel germanide is investigated.In particular, the process temperature windows for the fabrication of morphologically stable nickel germanide layers formed from initial nickel layers below 10 nm are identified and the reaction between nickel and germanium is further studied by means of in-situ x-ray diffraction. The agglomeration temperature of nickel germanide is increased by 100 °C by the addition of tantalum and tungsten interlayers and capping layers. In an effort to more thoroughly characterize the contacts, a method to reliably extract the specific contact resistivity is implemented on germanium.As a potential interconnect material cobalt is investigated. In a first step, highly conductive cobalt thin films are demonstrated by means of high-power impulse magnetron sputtering. The high conductivity of the cobalt films is owing to big grains, high density, high purity, and smooth interfaces. In a second step, the potential of high-power impulse magnetron sputtering for the metallization of nanostructures is further explored.
  •  
7.
  • Li, Jiantong, 1980- (författare)
  • Ink-jet printing of thin film transistors based on carbon nanotubes
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The outstanding electrical and mechanical properties of single-walled carbon nanotubes (SWCNTs) may offer solutions to realizing high-mobility and high-bendability thin-film transistors (TFTs) for the emerging flexible electronics. This thesis aims to develop low-cost ink-jet printing techniques for high-performance TFTs based on pristine SWCNTs. The main challenge of this work is to suppress the effects of “metallic SWCNT contamination” and improve the device electrical performance. To this end, this thesis entails a balance between experiments and simulations.   First, TFTs with low-density SWCNTs in the channel region are fabricated by utilizing standard silicon technology. Their electrical performance is investigated in terms of throughput, transfer characteristics, dimensional scaling and dependence on electrode metals. The demonstrated insensitivity of electrical performance to the electrode metals lifts constrains on choosing metal inks for ink-jet printing.   Second, Monte Carlo models on the basis of percolation theory have been established, and high-efficiency algorithms have been proposed for investigations of large-size stick systems in order to facilitate studies of TFTs with channel length up to 1000 times that of the SWCNTs. The Monte Carlo simulations have led to fundamental understanding on stick percolation, including high-precision percolation threshold, universal finite-size scaling function, and dependence of critical conductivity exponents on assignment of component resistance. They have further generated understanding of practical issues regarding heterogeneous percolation systems and the doping effects in SWCNT TFTs.   Third, Monte Carlo simulations are conducted to explore new device structures for performance improvement of SWCNT TFTs. In particular, a novel device structure featuring composite SWCNT networks in the channel is predicted by the simulation and subsequently confirmed experimentally by another research group. Through Monte Carlo simulations, the compatibility of previously-proposed long-strip-channel SWCNT TFTs with ink-jet printing has also been demonstrated.   Finally, relatively sophisticated ink-jet printing techniques have been developed for SWCNT TFTs with long-strip channels. This research spans from SWCNT ink formulation to device design and fabrication. SWCNT TFTs are finally ink-jet printed on both silicon wafers and flexible Kapton substrates with fairly high electrical performance.
  •  
8.
  • Li, Qing, 1981- (författare)
  • Conformationally Constrained Oligonucleotides for RNA Targeting
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A short oligonucleotide sequence as in a single-stranded antisense oligo nucleotides (AON) or in double-stranded small interfering RNAs (siRNA) can modulate the gene expression by targeting against the cellular mRNA, which can be potentially exploited for therapeutic purposes in the treatment of different diseases. In order to improve the efficacy of oligonucleotide-based drugs, the problem of target affinity, nuclease stability and delivery needs to be addressed. Chemical modifications of oligonucleotides have been proved to be an effective strategy to counter some of these problems.In this thesis, chemical synthesis of conformationally constrained nucleosides such as 7′-Me-carba-LNA-A, -G, -MeC and -T as well as 6′, 7′-substituted α-L-carba-LNA-T (Papers I-III) was achieved through a key free-radical cyclization. 1D and 2D NMR techniques were employed to prove the formation of bicyclic ring system by free-radical ring closure as well as to identify the specific constrained conformations in sugar moieties. These sugar-locked nucleosides were transformed to the corresponding phosphoramidites and incorporated into antisense oligonucleotides in different sequences, to evaluate their physicochemical and biochemical properties for potential antisense-based therapeutic application.AONs modified with 7′-Me-carba-LNA analogues exhibited higher RNA affinities (plus 1-4°C/modification) (Papers I & III), but AONs containing α-L-carba-LNA analogues showed decreased affinities (minus 2-3°C/ modification) (Paper II) towards complementary RNA compared to the native counterpart.  It has been demonstrated in Papers I-III that 7′-methyl substitution in α-L-carba-LNA caused the Tm drop due to a steric clash of the R-configured methyl group in the major groove of the duplex, whereas 7′-methyl group of carba-LNA locating in the minor groove of the duplex exerted no obviously negative effect on Tms, regardless of its orientation. Moreover, AONs containing 7′-Me-carba-LNA and α-L-carba-LNA derivatives were found to be nucleolytically more stable than native AONs, LNA modified AONs as well as α-L-LNA modified ones (Papers I-III). We also found in Paper II & III that the orientations of OH group in C6′ of α-L-carba-LNAs and methyl group in C7′ of 7′-Me-carba-LNAs can significantly influence the nuclease stabilities of modified AONs. It was proved that the methyl substitution in cLNAs which points towards the vicinal 3′-phosphate were more resistant to nuclease degradation than that caused by the methyl group pointing away from 3′-phosphate.Additionally, AONs modified with 7′-Me-carba-LNAs and α-L-carba-LNAs were found to elicit the RNase H mediated RNA degradation with comparable or higher rates (from 2-fold to 8-fold higher dependent upon the modification sites) as compared to the native counterpart. We also found that the cleavage patterns and rates by E. coli RNase H1 were highly dependent upon the modification sites in the AON sequences, regardless of the structural features of modifications (Papers II & III). Furthermore, we have shown that the modulations of Tms of AON/RNA duplexes are directly correlated with the aqueous solvation (Paper III).
  •  
9.
  • Li, Shiyu, 1991- (författare)
  • Engineering Surfaces of Solid-State Nanopores for Biomolecule Sensing
  • 2021
  • Konstnärligt arbete (övrigt vetenskapligt/konstnärligt)abstract
    • Nanopores have emerged as a special class of single-molecule analytical tool that offers immense potential for sensing and characterizing biomolecules such as nucleic acids and proteins. As an alternative to biological nanopores, solid-state nanopores present remarkable versatility due to their wide-range tunability in pore geometry and dimension as well as their excellent mechanical robustness and stability. However, being intrinsically incompatible with biomolecules, surfaces of inorganic solids need be modified to provide desired functionalities for real-life sensing purposes. In this thesis, we presented an exploration of various surface engineering strategies and an examination of several surface associated phenomena pertaining specifically to solid-state nanopores. Based on the parallel sensing concept using arrayed pores, optical readout is mainly employed throughout the whole study.For the surface engineering aspect, a list of approaches was explored. A versatile surface patterning strategy for immobilization of biomolecules was developed based on selective poly(vinylphosphonic acid) passivation and electron beam induced deposition technique. This scheme was then implemented on nanopore arrays for nanoparticle localization. In addition, vesicle rupture-based lipid bilayer coating was adapted to truncated-pyramidal nanopores, which was shown to be effective for the minimizing DNA-pore interaction. Further, HfO2 coating by means of atomic layer deposition was employed to prevent the erosion of Si-based pores and to shrink the pore diameter, which enabled reliable investigations of DNA clogging and DNA polymerase docking.For the surface associated phenomena, several findings were made. The lipid bilayer formation on truncated pyramidal nanopores via instantaneous rupture of individual vesicles was quantified based on combined ionic current monitoring and optical observation.  The probability of pore clogging appeared to linearly increase with the length of DNA strands and applied bias voltage, which could be attributed a higher probability of knotting and/or folding of longer DNA strands and more frequent translocation events at higher voltage. A free-energy based analytical model was proposed to evaluate the DNA-pore interaction and to interpret observed clogging behavior. Finally, docking of DNA polymerase on nanopore arrays was demonstrated using label-free optical method based on Ca2+ indicator dyes, which may open the avenue to sequencing-by-synthesis enabled by the docked polymerase.
  •  
10.
  • Wen, Chenyu (författare)
  • Solid-State Nanopores for Sensing : From Theory to Applications
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanopore based sensing technology has been widely studied for a broad range of applications including DNA sequencing, protein profiling, metabolite molecules, and ions detection. The nanopore technology offers an unprecedented technological solution to meeting the demands of precision medicine on rapid, in-field, and low-cost biomolecule analysis. In general, nanopores are categorized in two families: solid-state nanopore (SSNP) and biological nanopore. The former is formed in a solid-state membrane made of SiNx, SiO2, silicon, graphene, MoS2, etc., while the latter represents natural protein ion-channels in cell membranes. Compared to biological pores, SSNPs are mechanically robust and their fabrication is compatible with traditional semiconductor processes, which may pave the way to their large-scale fabrication and high-density integration with standard control electronics. However, challenges remain for SSNPs, including poor stability, low repeatability, and relatively high background noise level. This thesis explores SSNPs from basic physical mechanisms to versatile applications, by entailing a balance between theory and experiment.The thesis starts with theoretical models of nanopores. First, resistance of the open pore state is studied based on the distribution of electric field. An important concept, effective transport length, is introduced to quantify the extent of the high field region. Based on this conductance model, the nanopores size of various geometrical shapes can be extracted from a simple resistance measurement. Second, the physical causality of ionic current rectification of geometrically asymmetrical nanopores is unveiled. Third, the origin of low-frequency noise is identified. The contribution of each noise component at different conditions is compared. Forth, a simple nano-disk model is used to describe the blockage of ionic current caused by DNA translocation. The signal and noise properties are analyzed at system level.Then, nanopore sensing experiments are implemented on cylinder SiNx nanopores and truncated-pyramid silicon nanopores (TPP). Prior to a systematic study, a low noise electrical characterization platform for nanopore devices is established. Signal acquisition guidelines and data processing flow are standardized. The effects of electroosmotic vortex in TPP on protein translocation dynamics are excavated. The autogenic translocation of DNA and proteins driven by the pW-level power generated by an electrolyte concentration gradient is demonstrated. Furthermore, by extending to a multiple pore system, the group translocation behavior of nanoparticles is studied. Various application scenarios, different analyte categories and divergent device structures accompanying with flexible configurations clearly point to the tremendous potential of SSNPs as a versatile sensor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
konstnärligt arbete (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (24)
Författare/redaktör
Zhang, Shi-Li (8)
Zhang, Shi-Li, Profe ... (6)
Zhang, Zhen, 1979- (5)
Zheng, Li-Rong, Prof ... (2)
Chen, Si, 1982- (2)
Östling, Mikael, Pro ... (1)
visa fler...
Hansson, Sven Ove (1)
Olsson, Jörgen (1)
Chattopadhyaya, Jyot ... (1)
Zhang, Zhi-Bin (1)
Zhang, Zhibin (1)
Jansson, Ulf (1)
Ahlberg, Patrik, 198 ... (1)
Campbell, Eleanor (1)
Hinnemo, Malkolm, 19 ... (1)
Zhao, Wei (1)
Li, Jiebing, Docent (1)
Chen, Xi (1)
Zhang, Li (1)
Engstrand, Per, Prof ... (1)
Nordlund, Erling, 19 ... (1)
Wen, Chenyu (1)
Zhang, Ping (1)
Hammarström, Per, Pr ... (1)
Cantwell, John, Prof ... (1)
Mäntysalo, Matti, Pr ... (1)
Li, Jiantong, 1980- (1)
Zhao, Jie (1)
Hu, Qitao (1)
Xia, Fengnian, Assoc ... (1)
Vitos, Levente, Prof ... (1)
Peng, Ru Lin, Profes ... (1)
Zhang, Zhi (1)
Li, Changle, 1992- (1)
Konradsson, Peter, P ... (1)
Lupo, Donald, Profes ... (1)
Lemme, Max, Professo ... (1)
Zhang, Yujia (1)
O'Neill, Anthony, Pr ... (1)
Kim, Jeehwan, Associ ... (1)
Jablonka, Lukas, Dip ... (1)
Nemouchi, Fabrice, P ... (1)
Sandqvist, Tor, Univ ... (1)
Zhang, Pimin, 1990- (1)
Lu, Song, Dr (1)
Zhang, Hongbin, Prof ... (1)
Olin, Håkan, Chair P ... (1)
Alam, Muhammad Ashra ... (1)
Li, Qing, 1981- (1)
Zhang, Li-He (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Kungliga Tekniska Högskolan (9)
Linköpings universitet (2)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Teknik (15)
Naturvetenskap (9)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy