SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Qian) ;lar1:(ltu)"

Sökning: WFRF:(Zhang Qian) > Luleå tekniska universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shen, Gulou, et al. (författare)
  • Effect of surface roughness on partition of ionic liquids in nanopores by a perturbed-chain SAFT density functional theory
  • 2022
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 157:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the distribution and partition behavior of ionic liquids (ILs) in nanopores with rough surfaces are investigated by a two-dimensional (2D) classical density functional theory model. The model is consistent with the equation of state that combines the perturbed-chain statistical associating fluid theory and the mean spherical approximation theory for bulk fluids. Its performance is verified by comparing the theoretical predictions with the results from molecular simulations. The fast Fourier transform and a hybrid iteration method of Picard iteration and Anderson mixing are used to efficiently obtain the solution of density profile for the sizable 2D system. The molecular parameters for IL-ions are obtained by fitting model predictions to experimental densities of bulk ILs. The model is applied to study the structure and partition of the ILs in nanopores. The results show that the peak of the density profile of counterions near a rough surface is much higher than that near a smooth surface. The adsorption of counterions and removal of co-ions are enhanced by surface roughness. Thus, the nanopore with a rough surface can store more charge. At low absolute surface potential, the partition coefficient for ions on rough surfaces is lower than that on smooth surfaces. At high absolute surface potential, increasing surface roughness leads to an increase in the partition coefficient for counterions and a decrease in the partition coefficient for co-ions.
  •  
2.
  • Zhang, Qian, et al. (författare)
  • Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation
  • 2021
  • Ingår i: Journal of Membrane Science. - : Elsevier. - 0376-7388 .- 1873-3123. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • Zeolite crystals as inorganic fillers were widely applied in fabricating mixed matrix membranes (MMMs) for CO2 separation. The poor filler-matrix interaction and the aggregation of high-loaded fillers in MMMs restrict their advantage of overcoming the trade-off limitation between permeability and selectivity. The novel MMMs with two-dimensional (2D) MFI nanosheets as inorganic fillers and Pebax MH 1657 as the matrix were synthesized and applied to achieve an efficient separation of CO2/CH4 gas mixture for the first time. The large interfacial contact areas between MFI nanosheets and Pebax matrix improve their compatibility to form defect-free MMMs with better mechanical properties. The high-aspect-ratio MFI nanosheets function as solid and selective barriers to make MMMs possess a significant promotion in both CO2 permeability and CO2/CH4 selectivity without the trade-off limitation. The MMM containing 5 wt% of MFI nanosheets exhibited the optimum performance with CO2 permeability of 159.1 Barrer and CO2/CH4 selectivity of 27.4. The as-prepared MMMs showed an improvement of 63.5% in CO2 permeability and 76.4% in CO2/CH4 selectivity, compared to pristine Pebax membranes.
  •  
3.
  • Liu, Tong, et al. (författare)
  • Stochastic Optimal Control for Participatory Sensing Systems with Heterogenous Requests
  • 2016
  • Ingår i: IEEE Transactions on Computers. - 0018-9340 .- 1557-9956. ; 65:5, s. 1619-1631
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the crucial problem of maximizing the system-wide performance which takes into account request processing throughput, smartphone user experience and system stability in a participatory sensing system with cooperative smartphones. Three important controls need to be made, i.e., 1) request admission control, 2) task allocation, and 3) task scheduling on smartphones. It is highly challenging to achieve the optimal system-wide performance, given arbitrary unknown arrivals of sensing requests, intrinsic tradeoff between request processing throughput and smartphone user experience degradation, and heterogenous requests. Little existing work has studied this crucial problem of maximizing the system-wide performance of a participatory sensing system as a whole. In response to the challenges, we propose an optimal online control approach to maximize the system-wide performance of a participatory sensing system. Exploiting the stochastic Lyapunov optimization techniques, it derives the optimal online control strategies for request admission control, task allocation and task scheduling on smartphones. The most salient feature of our approach is that the achieved system-wide performance is arbitrarily close to the optimum, despite unpredictable and arbitrary request arrivals. Rigorous theoretical analysis and comprehensive simulation evaluation jointly demonstrate the efficacy of our online control approach.
  •  
4.
  • Shen, Gulou, et al. (författare)
  • Partition and selectivity of electrolytes in cylindrical nanopores with heterogeneous surface charge
  • 2021
  • Ingår i: Journal of Molecular Liquids. - : Elsevier. - 0167-7322 .- 1873-3166. ; 340
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, ion partitioning and selectivity in cylindrical nanopores with heterogeneous surface charges at equilibrium with reservoirs are investigated by a two-dimensional (2D) classical density functional theory (DFT). We present an efficient numerical method for the large 2D system in which the fast Hankel transform and fast Fourier transform are used to calculate convolution integrals, and a hybrid method of Picard iteration and Anderson mixing is used to solve the Euler-Lagrange equations. The performance of the 2D DFT is tested by calculating the profiles of a model electrolyte in long homogeneous cylindrical nanopores. The profiles from the 2D DFT model matches well with those from a 1D DFT, and the computing time of the hybrid iteration algorithm is six times shorter than that of pure Picard iteration. We apply the model to electrolytes in cylindrical nanopores with heterogeneous surface charges. It is found that the ion adsorption and selectivity are strongly affected by the surface charge pattern, the magnitude of the surface charge, the size of charged domains on the surface, and the pore size.
  •  
5.
  • Wang, Haibin, et al. (författare)
  • Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:1, s. 346-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic strains in metallic catalysts induce enhanced selectivity for carbon dioxide reduction (CO2R) toward valuable multicarbon (C2+) products. However, under working conditions, the structure of catalysts inevitably undergoes reconstruction, hardly retaining the initial strain. Herein, we present a metal/metal oxide synthetic strategy to introduce and maintain the tensile strain in a copper/ceria heterostructure, enabled by the presence of a thin interface layer of Cu2O/CeO2. The tensile strain in the copper domain and deficient electron environment around interfacial Cu sites resulted in strengthened adsorption of carbonaceous intermediates and promoted*CO dimerization. The strain effect in the copper/ceria heterostructure leads to an improved C2+ selectivity with a maximum Faradaic efficiency of 76.4% and a half-cell power conversion efficiency of 49.1%. The fundamental insights gained from this system can facilitate the rational design of heterostructure catalysts for CO2R.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy