SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yin) ;lar1:(ltu)"

Sökning: WFRF:(Zhang Yin) > Luleå tekniska universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chandrasekaran, Sundaram, et al. (författare)
  • Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
  • 2021
  • Ingår i: Coordination chemistry reviews. - : Elsevier. - 0010-8545 .- 1873-3840. ; 449
  • Forskningsöversikt (refereegranskat)abstract
    • The use of a wide range of methods for incorporating nitrogen atoms on robust catalysts has given rise to fundamental advances in the field of energy conversion and storage. Recently, nitrogen incorporation has proven to be able to fine-tune the electron densities of exposed active sites to create high-performance electrocatalysts. The preservation of a strong interface between the local atomic coordination of nitrogen atoms on bare carbon, single metal atoms, transition metal oxides, metal chalcogenides, and MXenes during synthesis plays an important role in producing an efficient electrocatalysts. In addition, the ability of nitrogen atoms to bind with carbon or metal atoms can be influenced by processing conditions. In this regard, this review is the first comprehensive overview of the range of synthetic strategies to form nitrogen incorporated catalysts and assess their chemical, structural, physical electronic property modification and their influence on electrocatalytic ORR, OER, and HER performance. This review will describe how specific strategies have been utilized to realise effective electrocatalytic systems, including the energy conversion of nitrogen incorporated catalysts, structural coordination, and material optimization. Finally, the main challenges to be considered in future investigations in order to initiate new research efforts in this promising research area are discussed.
  •  
2.
  • Li, Zhen, et al. (författare)
  • Photocatalytic Hydrogen Production
  • 2022
  • Ingår i: Photo‐ and Electro‐Catalytic Processes. - : John Wiley & Sons. ; , s. 415-483
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Yin, Xuan, et al. (författare)
  • Achieving ultralow friction under high pressure through operando formation of PbS QDs/graphene heterojunction with 0D/1D nanostructure
  • 2024
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, ultralow friction (0.054) of graphene was achieved under high contact pressure (1.03 GPa) and atmosphere environment via the operando formation of PbS quantum dots (QDs)/graphene heterojunction at the frictional interface. It is found that PbS QDs are trapped in graphene nanosheets via shear-induced rearrangement for obtaining the PbS QDs/graphene heterojunctions, which provide an excellent rolling effect to lower friction. It is also found that the heterogeneous PbS QDs/graphene tribofilms have a strong Pb-enriched function and heterojunction nanorod phase. Our objective is to uncover the physical and chemical mechanisms governing the friction of 0D/1D nanostructures within PbS QDs/graphene heterostructures through our studies. This research will enhance our comprehension of nanomaterials' frictional behavior while offering valuable guidance and optimization strategies for their application in mechanical engineering and functional nanomaterials. Consequently, our efforts aim to foster the advancement of nanoscience and technology, leading to additional scientific and technological breakthroughs.
  •  
4.
  •  
5.
  • Zhang, Yin, et al. (författare)
  • Towards modern sustainable construction materials: a bibliographic analysis of engineered geopolymer composites
  • 2023
  • Ingår i: Frontiers in Materials. - : Frontiers Media SA. - 2296-8016. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Engineered cementitious composites (ECC) exhibits impressive tensile strength but has significant environmental drawbacks due to high cement consumption. Recently, engineered geopolymer composites (EGC) have gained attention as a potential ECC alternative. This comprehensive study reviews the latest EGC advancements, encompassing mix design, design theory, engineering properties, environmental benefits, and durability. It emphasizes how factors like activators, precursors, fibers, additives, and aggregates impact EGC properties, making it a cost-effective material for fire, chemical resistance, and dynamic loads. To address limitations in traditional literature reviews, innovative research methods, including scientometric analysis, were employed to provide a cohesive analysis. This review aims to facilitate knowledge dissemination and collaboration by summarizing EGC advances and highlighting remaining challenges in developing practical applications. It is revealed from the review that various manufacturing methods enhance geopolymers, especially in geopolymer concrete, where replacing 50% of ordinary Portland cement with fly ash boosts strength. Geopolymer concrete excels in pre-cast applications, offering durability and resistance to harsh conditions as an eco-friendly alternative to Portland cement. It suits highway pavement, walls, marine coatings, and tiles, reducing carbon emissions and promoting efficient waste management. EGCs find broad use in construction due to their strong, durable, and eco-friendly qualities, supporting sustainable infrastructure development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy