SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yong) ;mspu:(doctoralthesis)"

Sökning: WFRF:(Zhang Yong) > Doktorsavhandling

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Hanzhu, 1991- (författare)
  • High-entropy boron-carbide and its composites
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High-entropy alloy (HEA) is a multicomponent alloy material that contains five or more principal elements in equi- or near equi-atomic ratios. The entropy stabilisation leads to the formation of a crystalline solid solution accommodating the principal elements. The HEA solid solution has characteristic features such as lattice distortion, sluggish diffusion and cocktail effect that contribute to the superior properties of HEA including high strength, high hardness, excellent thermal and chemical stability, etc. The concept of HEA has been extended to ceramic materials to process high-entropy ceramic (HEC) that consists of multiple ceramic compounds such as metallic oxides, nitrides or carbides. The HECs have shown entropy stabilisation and formed single-phase ceramic solid solutions. However, the formation mechanism of high-entropic phase in HECs remains unclear and unpredictable. Generally, in order to maximise the probability of forming a high-entropy solid solution in a ceramic system, ceramic compounds with least difference in the crystal structure, preferably with only one anionic constituent element, are favoured when designing HECs, which limits the potential of discovering and developing new HECs. In this project, a multicomponent ceramic system containing six ultra-high temperature ceramics (UHTCs), B4C, HfC, Mo2C, TaC, TiC and SiC, was used to investigate the formation of high-entropy ceramics, UHTC composites, as well as the microstructure evolution, properties and high temperature applications. A ceramic composite composed of SiC and a high-entropy boron-carbide with hexagonal crystal structure was successfully processed from the carbide system in spite of the difference in the crystal structures of precursors (face-centred cubic, hexagonal and rhombohedral). The hexagonal HEC solid solution exhibited a unique AlB2 structure with alternating layers of metal and non-metal C/B atoms according to the experimental and simulation investigations. The HEC/SiC composite showed superior mechanical properties such as ultra-high hardness, excellent wear and oxidation resistance. The addition of B4C was discovered to be the key factor in the formation of the hexagonal high-entropy boron-carbide solid solution, while the final phase composition was tailored by utilising precursors of different particle size. Additionally, SiC as the reinforcement component in the HEC/SiC composite was used to tailor the microstructure, phase evolution and mechanical properties of the high-entropy boron-carbide composite. Higher content of SiC resulted in enhanced mechanical properties such as hardness and fracture toughness, as well as promoted the formation of the hexagonal high-entropy boron-carbide solid solution. To extend the investigation on the high-entropy boron-carbide composite to application, B4C, HfC, Mo2C, TaC and TiC were consolidated into a target for magnetron sputtering. The target was used to deposit oxidation-resistant high-entropy coatings using magnetron sputtering on carbon-carbon composites. The coatings showed superior mechanical performance and high temperature oxidation resistance at 2000 °C on carbon-carbon composite, suggesting potential applications of high-entropy boron-carbide ceramics as a protective coating material against oxidation at elevated temperature. This work pointed out the possibilities of synthesising high-performance HECs with superior properties from components with vast elemental and structure diversity, and thereby advanced the design criteria of HECs and provided more potential research directions for the new high-performance ceramic materials.
  •  
2.
  • Zhang, Yong, 1982 (författare)
  • Graphene Heat Spreaders for Electronics Thermal Management Applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Graphene shows great potential for applications in electronics due to its outstanding physical properties such as extremely high electron mobility, high thermal conductivity, high Young’s modulus and very high surface-to-volume ratio. Among these attractive properties, the high intrinsic thermal conductivity is a critical advantage for the application of graphene in electronics to alleviate heat dissipation problems. The work described in this thesis attempts to apply graphene as heat spreader for thermal management in electronic packaging.To apply graphene as a potential alternative to metals for heat spreading applications, high-quality material and large-area synthesis is required. In the current thesis work, thermal chemical vapor deposition (TCVD), liquid phase exfoliation (LPE) from graphite, and reduction of graphene ox- ide (GO) are used to synthesize graphene, and transfer methods were also demonstrated.In the TCVD approach, high quality graphene was fabricated over a large- area, controlling the graphene layer thickness. The thermal performance of graphene heat spreaders was evaluated by the temperature drop of the hotspots after the graphene transfer. To further enable the development of graphene heat spreaders, phonon scattering on the graphene-substrate interface, phonon-grain boundary scattering, thermal resistance boundary (TBR), and the effect of the number of graphene layers are discussed.In the LPE approach, following LPE films were made by two different methods, vacuum filtration and drop coating. Three different methods were combined to evaluate and predict the thermal performance of such graphene- based films. Resistance thermometers were used to monitor the hotspot temperature decrease versus the Joule heat flow as a result of using graphene- based heat spreaders. The 3ω method was used to experimentally deter- mine the in-plane and through-plane thermal conductivities of such films. A finite element (FE) model of the hotspot test structure was setup using the in-plane and through-plane thermal conductivities obtained from the 3ω measurements. Simulations were performed to predict the hotspot temperature decrease with excellent agreement obtained between all methods. The results indicate that the alignment and purity of the graphene-based films, as well as their thermal boundary resistance with respect to the chip, are key parameters when determining the thermal performance of graphene-based heat spreaders.In the reduction of GO approach, a graphene-based film heat spreader was fabricated from the reduced graphene oxide (RGO). However, these free- standing materials were poorly adhered to the substrate because only weak van der Waals interactions provide any adhesion. The enhanced heat transfer by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules is demonstrated. Different techniques such as resistance thermometers, IR test, photothermal reflectance and molecular dynamics simulations were employed to reveal that the functionalization mediates heat transport in graphene nanoflakes. These studies suggest a significant package level solution for the thermal management of hotspots in high-power electronics at the micro- and nanometer scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy